Чтобы перевести обыкновенную дробь с целым числом в десятичную, необходимо:
1) избавиться от целой части. Для этого знаменатель умножаем с целым числом и прибавляем числитель. Знаменатель оставляем прежним, а результат вычисления запишем в числитель
2) Разделить в столбик (или в уме) числитель на знаменатель:
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
1) избавиться от целой части. Для этого знаменатель умножаем с целым числом и прибавляем числитель. Знаменатель оставляем прежним, а результат вычисления запишем в числитель
2) Разделить в столбик (или в уме) числитель на знаменатель:
163 | 20
160 | 8,15
___
---30
---20
____
---100
---100
_____
-------0
Итак,
Чтобы десятичную дробь перевести в обыкновенную, надо:
1) Представить десятичную дробь в виде обыкновенной
И если нужно, то сократить: