Сумма членов арифметической прогрессии находится по формуле: S=(2a1+(n-1)*d)*n/2, где a1-первый член прогрессии, а d- разность этой прогрессии, n - количество членов в прогрессии. Из условия можем найти: (2а1+9d)*5=190 (так как среднее арифметическое равно сумме членов деленных на количество членов прогрессии), значит 2a1+9d=38 ⇒ a1+4.5d=19. Теперь найдем a1 и d методом подбора, нам известно, что это числа натуральные, поэтому 19-a1 будет делиться на 4,5 без остатка, это числа либо 9, либо 18 ⇒ если 19-а1=18, то а1=1 d=4, если 19-а1=9, то а1=10 и d=2.
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.