Чтоб найти числовое значение многочлена a2+2ay+y2 при a=8 и y=−7, нужно в выражение подставить известные значения а и у, и решить его.
а2 + 2ау + у2 = (8)2 + 2 * 8 * (- 7) + (- 7)2;
Возносим (8) и (- 7) квадрату:
(8)2 = 64;
(- 7)2 = 49;
Умножаем:
2 * 8 * (- 7) = 16 * (- 7) = - 112;
Подставляем значения в выражение:
64 + (- 112) + 49;
Раскрываем скобки:
64 - 112 + 49;
Вычитаем:
64 - 112 + 49 = - 48 + 49;
Добавляем:
- 48 + 49 = 1.
ответ: числовое значение многочлена a2+2ay+y2 при a=8, y=−7 равен 1
Объяснение:
1) Преобразуем в многочлен:
а) (у - 4) ² = y ^ 2 - 2 * y * 4 + 4 ^ 2 = y ^ 2 - 8 * y + 16;
б) (7 * х + а) ² = 49 * x ^ 2 + 14 * x * a + a ^ 2;
в) (5 * с - 1) * (5 * с + 1) = 25 * c ^ 2 - 1;
г) (3 * а + 2 * b) * (3 * а - 2 * b) = 9 * a ^ 2 - 4 * b ^ 2;
2) У выражение:
(а - 9) ² - (81 + 2 * а) = a ^ 2 - 18 * a + 81 - 81 - 2 * a = a ^ 2 - 20 * a = a * (a - 20);
3) Разложиv на множители:
а) х ² - 49 = (x - 7) * (x + 7);
б) 25 * х² - 10 * х * у + у ² = (5 * x) ^ 2 - 2 * (5 * x) * y + y ^ 2 = (5 * x - y) ^ 2.
1 - 3
2- 2
3 - 1
Объяснение: