На плоскости у двух прямых всего два варианта – прямые пересекаются или не пересекаются (параллельны). Если пересекаются, то имеют только одну общую точку.
2) ответ -нет
Через точку плоскости можно провести множество прямых, не принадлежащих данной плоскости.
Через точку плоскости можно провести множество прямых, на данной плоскости.
3) ответ-нет.
Если две прямые пересекаются, то делят плоскость на 4 части
Если две прямые параллельны, то они делят плоскость на 3 части.
4) ответ-нет.
Точка, делящая отрезок на две равные части, называется серединой отрезка.
5) ответ-нет
Если точки A, B, C лежат на одной прямой, причём точка В лежит между точками А и С, то имеет место равенство: AB+BC=AC
Чтобы доказать, что треуг равноб, нужно найти длины всех трех сторон: координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3) АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех аналогично все остальные стороны ВС=(2-2;-2-4)=(0;-6) длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6 АС=(2-(-6);-2-1)=(8;-3) АС=корень квадратный из суммы квадратов координат получаем, что и длина АС равна корень из 75 АВ=АС, то есть треуг равноб
ответ: 1) ответ-нет.
На плоскости у двух прямых всего два варианта – прямые пересекаются или не пересекаются (параллельны). Если пересекаются, то имеют только одну общую точку.
2) ответ -нет
Через точку плоскости можно провести множество прямых, не принадлежащих данной плоскости.
Через точку плоскости можно провести множество прямых, на данной плоскости.
3) ответ-нет.
Если две прямые пересекаются, то делят плоскость на 4 части
Если две прямые параллельны, то они делят плоскость на 3 части.
4) ответ-нет.
Точка, делящая отрезок на две равные части, называется серединой отрезка.
5) ответ-нет
Если точки A, B, C лежат на одной прямой, причём точка В лежит между точками А и С, то имеет место равенство: AB+BC=AC