
и
– среднеарифметическое равно
и при этом
на
меньше двадцати пяти и на
больше семнадцати.
монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на
монет меньше изначального, а у Пети на
монет больше изначального. А значит, вначале у Васи было на
монет больше, чем у Пети.
монет. Тогда у Пети
монет.
монет, а у Пети-II будет
монет. При этом у Пети-II монет в
раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в
раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:



было целым, целой должен быть и результат деления в дроби, а чтобы
было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда
откуда:




было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет
откуда:
пара чисел (1;-6) для уравнения p^2*x+p*y+8=0
p^2 - 6p + 8 = 0
D = 36 - 4*8 = 36 - 32 = 4 = 2^2
p1 = (6-2)/2 = 2 p2 = (6+2)/2 = 4
p^2-6p+8=0
р*р - 4р - 2р + 2*4 = 0 (разложим на множители)
сгрупируем по парам - первые два(тут можно за скобки вынести "р")
и вторые сгрупируем - тут вынесим за скобки "-2" )
р * ( р - 4) - 2 (р - 4) = 0
теперь опять как бы вынесим за скобки (р-4)
(р-4) (р-2) = 0
р - 4 = 0 и р - 2 = 0
р = 4 р = 2
данная пара чисел (1;-6) будет являться решением уравнения p^2*x+p*y+8=0 при р = 2 или р = 4
x є (2;∞)
Объяснение:
x є (2;∞).