ответ: -7/25
Объяснение: применим формулу синуса разности двух углов 1)sin(arccos 4/5 - arccos 3/5)= sin(arccos 4/5 )·Сos(arccos3/5) - Cos(arccos 4/5)·Sin (arccos 3/5)⇒
2) Так как Sin(arccos a)= √(1-a²), то (arccos 4/5 )= √(1-(Сos²(arccos 4/5))²= √(1-16/25)= √(9/25)=3/5;
3) Сos(arccos 3/5)= 3/5
4) Cos(arccos 4/5)=4/5
5) Sin (arccos 3/5)= √(1- 9/25)= √16/25= 4/5
6) Тогда, возвращаясь к 1) , имеем:
sin(arccos 4/5 - arccos 3/5)= sin(arccos 4/5 )·Сos(arccos3/5) - Cos(arccos 4/5)·Sin (arccos 3/5) = 3/5 · 3/5 - 4/5 ·4/5 = 9/25-16/25= - 7/25
6x+3=5x-4(5y+4);
3(2x-3y)-6x=8-y;
Раскрываем скобки по распределительному закону умножения.
6х+3=5х-20у-16;
6х-9у-6х=8-у;
Переносим члены уравнения с неизвестным в левую часть, а известные в правую часть при этом изменяем знак каждого члена на противоположный.
6х-5х+20у=-3-16;
6х-9у-6х+у=8;
Приводим подобные члены уравнения в обеих частях уравнения.
х+20у=-19;
-8у=8;
Находим переменную у во втором уравнении.
х+20у=-19;
у=8:(-8);
х+20у=-19;
у=-1;
Подставляем значение переменной у в первое уравнение.
х+20*(-1)=-19;
х-20=-19;
х=-19+20;
х=1;
ответ: (1;-1).
Объяснение: