М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pep4
pep4
06.04.2022 16:48 •  Алгебра

(3х+2)все это в квадрате-(5+2х)все это в квадрате=-17 нужно решить уровнение, если корней несколько то укажите их срднее арифметическое

👇
Ответ:
зика23
зика23
06.04.2022
(9х^2+12х+4)-(25+20х+4х^2)=-17
5х^2-8х-4=0
Д=64-4*5*(-4)=12^2
х=(8+-12)/10
х1=2 х2=-0,4
(2+(-0,4))/2=0,8
4,8(95 оценок)
Открыть все ответы
Ответ:
ника2760
ника2760
06.04.2022

Правильное условие такое:

У брата х груш, а у сестры у² яблок. Вместе у них было 11 этих фруктов. Если бы у брата было у груш, а у сестры -х² яблок, то всего этих фруктов у них было бы 7. Сколько было груш и сколько было яблок? ​

Решение.

\left \{ {{x+y^2=11} \atop {x^2+y=7}} \right.

ОДЗ: 0  0  

Методом подбора быстрее.

1) Начнем с решения второго уравнения.

x^{2} +y=7

x^{2}=7-y

Если y=1, то 7-1=6. Тогда x^{2}=6=x=\sqrt{6}  не натуральное число.

Если y=2, то 7-2=5. Тогда x^{2}=5=x=\sqrt{5}  не натуральное число.

Если y=3, то 7-3=4. Тогда x^{2}=4=x=\sqrt{4}=2  натуральное число.

Получили решение

x=2;  y=3

2) Подставим  x=2;  y=3  в первое уравнение  x+y^2=11 .

 2+3^2=11

 2 +9=11

       11=11 верное равенство.

ответ: 2 груши у брата;

           3 яблока у сестры.

4,7(92 оценок)
Ответ:
nyusha1990
nyusha1990
06.04.2022

ответ: Решений  в натуральных числах нет

Объяснение:

Пусть : НОД(x,y)= t

x=a*t

y=b*t

a , b взаимно простые натуральные числа.

a^3*t^3 -4*a*t -b^2*t^2=0

a^3*t^2 -b^2*t -4a=0

Очевидно , что b^2 *t делится на a , но поскольку a и b взаимно простые, то t делится на a.

t=m*a

m- натуральное число

a^5 *m^2 -a*b^2*m -4a=0

a^4 *m^2 -b^2*m -4=0

m*( a^4*m -b^2)=4

То есть : m=1 ; 2 ; 4

1) m=1

a^4 -b^2=4

(a^2 -b)*(a^2 +b)=4

Заметим что :

(a^2 -b ) + (a^2+b)=2a^2 - четно , а значит либо обе скобки четны , либо обе нечетны , но тк правая часть делится на 4 , то обе четны .

То есть :a^2-b=a^2+b=+-2

2a^2=+-4

a^2=2

a= sqrt(2) - нецелое число .

Вывод : m=1 не подходит.

2) m=4

4*a^4 -b^2 =1

(2*a^2 -b)*(2*a^2+b)=1

2a^2-b=2a^2+b=+-1

4*a^2=+-2

a^2= 1/2

a=1/sqrt(2) - нецелое число.

3) Основной случай : m=2

2*a^4 -b^2=2

2*(a^4 -1)=b^2

Рассуждения о полных квадратах тут не совсем работают из за назойливой двойки слева. Чтобы от неё избавится ,применим следующий приём:

b^2 - чётно , а значит b так же чётно , то b^2 делится на 4 , а значит:

a^4 -1 четно , а значит a^4 нечетно.

a=2*k-1 k- натуральное число.

2*( a^2-1)*(a^2+1)=b^2

a^2=4k^2-4k+1

2*(4k^2-4k)*(4k^2-4k+2)=b^2

16 * k *(k-1) * ( 2* k*(k-1) +1)=b^2

b^2 делится на 16 , а значит b делится на 4.

b=4*n n- натуральное число

Так же сделаем замену: k*(k-1)=k^2-k =s - целое неотрицательное число.

s*(2s+1)=n^2 , теперь когда мы избавились от осложняющих ситуацию степеней двоек , можно уже начать рассуждать о взаимной простоте. Заметим , что при k>1

 k^2-2k+1 < k^2-k<k^2

(k-1)^2<k^2-k <k^2

То есть s находится между двумя соседними квадратами , а значит s не является полным квадратом.

s*(2s+1)=n^2

Тогда если s не полный квадрат , то и 2s+1 не полный квадрат. Очевидно , что при s>0  s и 2s+1 взаимно простые. Действительно , если s делится на некоторое простое число p , то 2*s так же делится на p , но тогда 2s+1 не делится на p. Тк s не является полным квадратом , то оно представляется в виде произведений степеней простых чисел , причём хотя бы одно простое число возведено в нечетную степень .Для 2s+1 ситуация аналогична и в ее состав входят простые множители отличные от s. Таким образом s*(2s+1) неизбежно содержит хотя бы два простых числа возведённых в нечетную степень.

Вывод:

s*(2s+1) не является полным квадратом при s>0

Пусть s=0 , но тогда b=0 , то y=0 что не является натуральным числом.

Вывод: уравнение не имеет решений в натуральных числах.

P.S Скажу теперь ,почему нельзя рассуждать про квадраты в выражении: (обязательно кто нибудь спросит)

2*(a^4-1)=b^2

Безусловно и понятно , что a^4 -1 (при a >1) не полный квадрат и казалось бы это значит , что 2*(a^4-1) сразу же не является полным квадратом. Но на самом деле это так сразу далеко не очевидно! Ведь разложение на простые четного числа a^4 -1 ,не являющего квадратом , может содержать нечетную степень двойки , а все остальные степени простых чисел буду четны . В этом смысле все таки остаётся вероятность ,что 2*(a^4-1) может быть полным квадратом. Кому то может показаться ,что простая двойка никак не может осложнить жизнь , но это большое заблуждение!

4,7(90 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ