Примем производительность первого маляра за х, второго за у Тогда вдвоем они за 1 час покрасят х+у=40 м² Работая в одиночку, первый маляр покрасит 50 м² за 50:х (часов) а второй 90м² за 90:у (часа) Из условия задачи известно, что 90:у-50:х=4 (часа) Составим систему уравнений: |х+у=40 |90:у-50:х=4 Из первого уравнения найдем у через х у=40-х Подставим это значение во второе уравнение
90:(40-х)-50:х=4 Умножим обе части уравнения на х(40-х), чтобы избавиться от дроби. 90х-50(40-х)=4 х(40-х), 90х-2000 +50х =160х -4х² 4х² +90х-2000 +50х - 160х= 0 4х² -20х-2000=0 Для облегчения вычисления разделим обе части на 4, получим х² -5х-500=0
А) Время движения скорого поезда: x - 1/3 (ч) б) Путь, пройденный товарным поездом до встречи со скорым: S₁ = v₁x = 66x (км) в) Путь, пройденный скорым поездом до встречи с товарным: S₂ = v₂(x - 1/3) = 90(x - 1/3) = 90x - 30 Так как расстояние S = АВ = 256 км, то: S = S₁+S₂ 256 = 66x + 90x - 30 156x = 286 x = 1 5/6 (ч) Таким образом, товарный поезд находился в пути до встречи со скорым 1 час 50 мин и за это время: S₁ = v₁x = 66 * 1 5/6 = 121 (км) Скорый поезд находился в пути до встречи с товарным 1 час 30 мин и за это время S₂ = v₂(x - 1/3) = 90 * 1 5/6 - 30 = 165 - 30 = 135 (км)
ответ: поезда встретятся на расстоянии 121 км от станции А и 135 км от станции В.
Примем производительность первого маляра за х, второго за у
Тогда вдвоем они за 1 час покрасят
х+у=40 м²
Работая в одиночку, первый маляр покрасит 50 м² за
50:х (часов)
а второй 90м² за
90:у (часа)
Из условия задачи известно, что
90:у-50:х=4 (часа)
Составим систему уравнений:
|х+у=40
|90:у-50:х=4
Из первого уравнения найдем у через х
у=40-х
Подставим это значение во второе уравнение
90:(40-х)-50:х=4 Умножим обе части уравнения на х(40-х), чтобы избавиться от дроби.
90х-50(40-х)=4 х(40-х),
90х-2000 +50х =160х -4х²
4х² +90х-2000 +50х - 160х= 0
4х² -20х-2000=0 Для облегчения вычисления разделим обе части на 4, получим
х² -5х-500=0
Решая задачу через дискриминант, получим
х=25 м² в час
100 м² первый маляр покрасит за
100:25=4 часа.