Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым: abcd=1000a+100b+10c+d dcba=1000d+100c+10b+a
По условию: abcd-dcba=909 1000a+100b+10c+d-1000d-100c-10b-a=909999a-999d+90b-90c=909 999(a-d)+90(b-c)=909 111(a-d)-10(c-b)=101 Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит: 111-10(c-b)=101 10(c-b)=10c-b=1 ⇒a=d+1, из чего видно, что d≤8 c=b+1, из чего видно, что b≤8 Есть еще условие, что сумма цифр кратна 9.a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=18d+b=8
Пусть углы при основании равны x, тогда угол при вершине равен 180°-2x. Составим функцию зависимости суммы косинусов углов данного треугольника от x:
f(x)=2cosx+cos(180°-2x)=2cosx-cos2x=2cosx-2cos²x+1=-2cos²x+2cosx+1
Сделав замену cosx=t, получим функцию:
f(t)=-2t²+2t+1
Это парабола, a<0 ⇒ ветви вниз. Наибольшее значение функции достигается в вершине.
t0=-2/-4=0.5
Меняем обратно:
cosx=0.5 ⇒ x=±π/3+2πk; k∈Z
Осталось подставить любой корень из полученных двух серий корней в уравнение функции и найти f(x)max:
f(π/3)=-2cos²(π/3)+2cos(π/3)+1=-2·(1/4)+2·(1/2)+1=1.5
ответ: 1.5