1.Вычислите наиболее рациональным б) 11²+22·19+19²=11²+2·11·19+19²=(11+19)²=30²=900
в обоих случаях использовали формулу сокращённого умножения
(a+b)²=a²+2ab+b²
2. Представьте в виде многочлена выражение:
а) (5х+2y)²+(5x-2y)²=(25х²+20xy+4y²)+(25x²-20xy+4y²)=
25х²+20xy+4y²+25x²-20xy+4y²=(25х²+25x²)+(20xy-20xy)+(4y²+4y²)=50x²+8y²
б) (a+2b)²-(a+b)²=(a²+4ab+4b²)-(а²+2аb+b²)=a²+4ab+4b²-a²-2ab-b²=
(a²-a²)+(4ab-2ab)+(4b²-b²)=2ab+3b²
в обоих случаях использовали формулу сокращённого умножения
(a+b)²=a²+2ab+b²
(a-b)²=a²-2ab+b²
3. Разложите на множители
4x²-4x-4y-y²-3=(4x²-4x+1)-(у²+4y+4)=(2x-1)²-(y+2)²=((2x-1)+(y+2))((2x-1)-(y+2))=
(2x-1+y+2)(2x-1-y-2)=(2x+y+(-1+2))(2x-y+(-1-2))=(2x+y+1)(2x-y-3)
Чтобы получить 225, можно перемножить такие разные натуральные числа:
225*1, 75*3, 45*5, 25*9.
Произведение двух наименьших = 16
Чтобы получить 16, можно перемножить такие разные натуральные числа:
16*1, 8*2.
Т.к. есть 2 самых меньших и 2 самых больших, то меньшие не могут быть больше больших (очевидно же). Поэтому есть лишь вариант 25,9 и 8,2. В любых других случаях одно из больших чисел меньше одного из меньших чисел, чего не может быть.
Сумма всех чисел = 25+9+8+2 = 44