М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
abrikosikhii
abrikosikhii
30.07.2021 04:01 •  Алгебра

√2•√22•√11=?
√10•√90=?
решить

👇
Ответ:
olga810706
olga810706
30.07.2021

Объяснение:

Решение на фотографии


√2•√22•√11=?√10•√90=?решить
4,8(56 оценок)
Открыть все ответы
Ответ:
Nuraaaykaaa
Nuraaaykaaa
30.07.2021
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е
(3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета:
x1+x2=-b/a=5-3p
x1*x2=c/a=3p^2-11p-6
Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2.
Выделим полный квадрат:
(x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6).
По условию, эта сумма квадратов  равна 65.
Получаем:
(5-3p)^2-2(3p^2-11p-6)=65
Решим его:
25-30p+9p^2-6p^2+22p+12-65=0
3p^2-8p-28=0
D=(-8)^2-4*3*(-28)=400
p1=(8-20)/6=-2
p2=(8+20)/6=14/3
Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен.
Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят.
Теперь найдем корни уравнения:
1)p=-2
x^2-11x+28=0
x1=4; x2=7
2)p=14/3
x^2+9x+8=0
x1=-8; x2=-1
ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
4,5(71 оценок)
Ответ:
24556
24556
30.07.2021
y (x)= |2 - \sqrt{5 + |x| } | \\
областью определения y(x) будет x€R
(5+|x|>0 при любых x)

Теперь найдем множество значений, исходя из свойств модуля и квадратного корня
|x| \geqslant 0
5 + |x | \geqslant 5
\sqrt{5} \geqslant \sqrt{5 + |x| } \geqslant 0
2 - \sqrt{5 + |x|} \leqslant 2 - \sqrt{5}
y(x) = |2 - \sqrt{5 + |x|} | \geqslant \\ \geqslant | 2 - \sqrt{5} | = \sqrt{5} - 2 0
как мы видим нулей функции у(х) нет

теперь раскроем внутренний модуль,
а затем внешний

y (x)= |2 - \sqrt{5 + |x| } | \\ = \left \{ |{ 2 - \sqrt{5 + x} |} , x \geqslant 0 \atop |{2 - \sqrt{5 - x} | , \: x < 0} \right. = \\ = \left \{ { - 2 + \sqrt{5 + x} } , x \geqslant 0 \atop { - 2 + \sqrt{5 - x} , \: x < 0} \right.

внешний модуль раскрывается основываясь на сравнении значения квадратного корня и 2 при значениях х из заданных интервалов.

из вида функции и свойств квадратного корня мы видим , что
при х>0 функция возрастает
при х<0 функция убывает

причём минимум функции будет при х=0

y (0)= |2 - \sqrt{5 + |0| } | = \\ = \sqrt{5} - 2 \\

Функции , составляющие y(x)

y_1 = { - 2 + \sqrt{5 + x}} \\ y_2 = { - 2 + \sqrt{5 - x}}
строятся на основе функции
\sqrt{x}
соответствующими сдвигами вдоль осей ординат и абсцисс

Финальный график - см на фото

удачи!

Постройте график функции. укажите область определения, множество значений, промежутки монотонности,
4,7(95 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ