5875
8575
Объяснение:
Запишем число в виде:
abcd
Признак делимости на 25:
Число делятся на 25, если оно заканчивается двумя нулями или цифрами, выражающими число, которое делится на 25.
Итак, наше число может выглядеть так:
1) ab00
2) ab25
3) ab50
4) ab75
Проанализируем эти числа.
1) Это число не подходит, поскольку сумма цифр
S₁ = a + b + 0 + 0 = a + b = 25
Но максимальное значение a=9; b=9; a+b = 9+9 = 18≠25
2) И это число не подходит, поскольку сумма цифр
S₁ = a + b + 2 + 5 = a + b + 7
Или
a+b = 25-7 = 18
Единственный вариант:
a=9; b=9. Проверим произведение:
9·9·2·5 = 810. Но 810 не делится нацело на 25
3)
Не годится и вариант ab50
поскольку a+b+5+0 = 25
a+b=20, чего быть не может.
Итак, у нас остался четвертый вариант:
ab75, то есть искомое число заканчивается на 75.
Находим сумму цифр:
a+b+7+5 = a+b+12
a+b = 25-12 = 13
Здесь всего 6 вариантов, которые мы и проверим:
9+4 = 13; 4+9 = 13; 9·4·7·5 = 1260 не делится на 25.
8+5 = 13; 5+8 = 13; 5·8·7·5 = 1400 делится на 25
7+6 = 13; 6+7 = 13; 7·6·7·5 = 1260 не делится на 25.
Итак, мы нашли два четырехзначных восхитительных числа:
5875 и
8575
1) 2√-a^7 = 2√a^6*(-a) = 2a√-a
2) √-80a^3 = √16*5a^2*a (80 разложили на 16 и 5) = 4а√5а
4) √300а^8 = а^4√100*3 = а^4*10√3 = 10а^4√3
2
1) 2√7=√2^2*7 = √28
2) 10√5 = √10^2*5 = √500
3) -1/3√27 = √(-1/3)^2*27 = √-1/9*27 = √-27/9 = √-9/3 (дробь -27/9 сократили на 3) = √-3 (дробь -9/3 сократили на 3.
4) -7√3/14 = √(-7)^2*3/14 = √49*3/14 = √49*3/14 = √147/14 = √21/2
5) 1/4√68 = √(1/4)^2*68 = √1/16*68 = √68/16 = √14/7
6) 2√3/8 = √2^2*3/8 = √4*3/8 = √12/8 = √3/2
7) 5k√-k^3 = √(5k)^2*(-k^3) = √-25k^5 (при умножении показатели складываются)
9) -х^6√3 = √(-х^6)^2*3 = √х^12*3 = √3х^12
10) |х|√2 = √|x|^2*2 = √x^2*2 = √2x^2