Длина гипотенузы прямоугольного треугольника равна 4см. Найдите длины проекций катетов на гипотенузу если длина высоты проведенного из вершины равна корень из 3 см
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Обозначим один отрезок х, тогда второй 7-х
(2√3)²=х*(7-х)
12=7х-х²
х²-7х+12=0
D=b²-4ac=-72-4·1·12=1
х₁=4
х₂=3
Отрезки гипотеузы, на которые высота делит ее, равны 4 см и 3 см
{3x+4y=55 7x-y=56. подстановки из 7x-y=56 выведем у. у=7х-56. и подставим в 1- уравнение. 3х+4(7х-56)=55 3х+28х-224=55 31х=279 х=279:31. х=9 у=7·9-56=63-56=7 ответ:(9;7) сложения. {3x+4y=55 7x-y=56. для того чтобы избавиться от у умножим 2- уравнение на 4 3х+4у=55 28х-4у=224. сложим оба уравнения. 31х=279. х=9 у=7·9-56=63-56=7 ответ: (9;7) 3) графический из двух уравнении выведем у у1= (55-3х)/4 у2=7х-56 составим таблицу для у1= (55-3х)/4 х=5; у1=55-15/4=10 х=9; у1=55-27/4=7. для у2=7х-56 х=8 ; у2=7·8-56=0 х=9; у=7·9-56=7 данные обеих функции отметим на координатной плоскости , графики этих функции прямые, которые пересекутся в точке(9;7). есть подстановки, когда подбирают значения.
Пусть х - собственная скорость теплохода, тогда х+5 скорость по течению, х-5 скорость обратно. 140/(х+5) время в пути туда 140/(х-5) время в пути обратно составим уравнение, сложив время туда и обратно, и вычтем время стоянки (11ч). Зная, что всего в пути теплоход был 32 часа, получим 140/(х+5)+140/(х-5)=32-11 140(х-5)+140(х+5)=21(х-5)(х+5) разделим на 7 20(х-5)+20(х+5)=3(х-5)(х+5) 20х-100+20х+100=3х²-75 3х²-40х-75=0 D=160+4*3*75=1600+900=2500 √D=50 x1=(40+50)/6=15 x2=(40-50)/6=-10/6<0 посторонний корень ответ 15км/ч
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
Обозначим один отрезок х, тогда второй 7-х
(2√3)²=х*(7-х)
12=7х-х²
х²-7х+12=0
D=b²-4ac=-72-4·1·12=1
х₁=4
х₂=3
Отрезки гипотеузы, на которые высота делит ее, равны 4 см и 3 см
Объяснение:
НАДЕЮСЬ