М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dragon4ik341234
Dragon4ik341234
11.12.2020 18:51 •  Алгебра

Сложить дифференциальное уравнение и решить его найти кривую, которая проходит через точку (2; 2) и, в которой точка пересечения любой ее касательной с осью ox одинаково отдалена от точки касания и точки (0; 0) с подробным решением

👇
Ответ:
sashakO5класс
sashakO5класс
11.12.2020

Уравнение касательной: y-y_0=y'_0(x-x_0)

Отсюда: точка касания (x_0,y_0);

точка пересечения с осью Ох 0-y_0=y'_0(x-x_0)\\ x=x_0-\dfrac{y_0}{y'_0}

 

Расстояние от точки (0,0) до точки пересечения с осью Ох, конечно, равно \left|x_0-\dfrac{y_0}{y'_0}\right|

Расстояние от точки касания до точки пересечения с осью Ох:

\sqrt{(y_0-0)^2+\left(x_0-\left(x_0-\dfrac{y_0}{y'_0}\right)\right)^2}=\sqrt{y_0^2+\dfrac{y_0^2}{y'_0^2}

 

\left|x_0-\dfrac{y_0}{y'_0}\right|=\sqrt{y_0^2+\dfrac{y_0^2}{y'_0^2}}\\ x_0^2-\dfrac{2x_0y_0}{y'_0}+\dfrac{y_0^2}{y'_0^2}=y_0^2+\dfrac{y_0^2}{y'_0^2}\\ x_0^2-\dfrac{2x_0y_0}{y'_0}=y_0^2\\ y'_0=\dfrac{2x_0y_0}{x_0^2-y_0^2}

 

Перепишем в приличном виде:

y'=\dfrac{2xy}{x^2-y^2}

 

Положим y=xv, тогда y'=xv'+v:

xv'+v=\dfrac{2x^2v}{x^2-x^2v^2}\\ xv'=\dfrac{2v}{1-v^2}-v=\dfrac{v^3+v}{1-v^2}\\

 

Это простейшее уравнение с разделяющимися переменными, решим его:

\dfrac{1-v^2}{v^3+v}dv=\dfrac{dx}{x}\\ \int\dfrac{1-v^2}{v^3+v}dv=\ln Cx

 

\dfrac{1-v^2}{v(1+v^2)}=\dfrac1v-\dfrac{2v}{1+v^2}

\int\dfrac{1-v^2}{v(1+v^2)}=\ln|v|-\ln(1+v^2)

 

\dfrac{v}{1+v^2}=Cx\\ \dfrac{y/x}{1+y^2/x^2}=Cx\\ \dfrac{y}{x^2+y^2}=C

Это уравнение задает семейство окружностей с центром на оси ординат, проходящих через точку (0,0).

 

Учитывая, что окружность должна проходить через точку (2,2), находим значение С:

C=\dfrac{2}{4+4}=\dfrac14

 

ответ. это окружность \dfrac{4y}{x^2+y^2}=1.

 

P.S. На самом деле, то, что должна получаться окружность, практически очевидно. Условие равенства отрезков касательной, проведенных из одной точки, известно еще из школьного курса геометрии. 

P.P.S. На досуге можно подметить, что в точке (2,2) производная бесконечна, и в дифуре можно (?) найти некоторую неоднозначность...


Сложить дифференциальное уравнение и решить его найти кривую, которая проходит через точку (2; 2) и,
4,5(86 оценок)
Открыть все ответы
Ответ:
kataefimova
kataefimova
11.12.2020
1)   4x² + 7x + 3 = 0
     D = 49 - 4*4*3 = 49 - 48 = 1
     √D = 1
     x1= ( -7+1)/8 = - 6/8 = - 3/4
    x2= ( -7- 1)/8 = - 8/8 = -1
   Тогда по теореме о разложении квадратного трехчлена на множители 
    4x² + 7x + 3=4(х +1)(х + 3/4)
2)  x²  + bx +4 = 0
   1. Предположим, что уравнение имеет два различных корня,  один из которых равен  3,  тогда по теореме Виета:
       х1 +х2 = - b      =>   3 + х2 = -b     =>  х2 = -b - 3        =>
       х1*х2 = 4                 3*х2 = 4               х2 = 4/3
( пусть х1=3 )
  
 =>  -b - 3 = 4/3
          -b  = 4/3 + 3
          -b  = 4 1/3
           b  = -  4 1/3      =>  при  b  = -  4 1/3  уравнение имеет два корня, один из которых равен 3.

      2.Уравнение имеет два различных корня, если D>0,
       D =   b² - 4*1*4 = b² - 16
         b² - 16 > 0
         (b - 4)(b + 4)  > 0
          b < -4  или b > 4
    Уравнение имеет два различных корня, если b < -4  или b > 4.
            
  
4,7(45 оценок)
Ответ:
Саша77777777
Саша77777777
11.12.2020
1)Найдем дискриминант квадратного уравнения 
D=b(кв)-4ac=3(кв)-4*1*(-28)=9+112=121
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(-3-(корень)121)/2*1=(-3-11)/2=-14/2=-7
x2=(-3+(корень)121)/2*1=(-3+11)/2=8/2=4

2)Найдем дискриминант квадратного уравнения
D=b(кв)-4ac=-2(кв)-4*2*(-8)=4+64=68
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(2-(корень)68)/2*2=0,5-0,5*(корень)17~=-1,56155
x2=(2+(корень)68)/2*2=0,5+0,5*(корень)17~=2,56155

3)найдем дискриминант 
D=b(кв)-4ac=-5(кв)-4*1*6=25-24=1
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(5-(корень)1)/2*1=(5-1)/2=4/2=2
x2=(5+(корень)1)/2*1=(5+1)/2=6/2=3
ax(кв)+bx+c=a(x-x1)(x-x2)
Отсюда x(кв)-5x+6=(x-2)(x-3)

4)найдем дискриминант
D=b(кв)-4ac=-1(кв)-4*(-6)*1=1+24=25
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(1-(корень)25)/2*(-6)=(1-5)/-12=-4/-12=1/3
x2=(1+(корень)25)/2*(-6)=(1+5)/-12=6/-12=-1/2
ax(кв)+bx+с=a(x-x1)(x-x2)
Отсюда -6x(кв)-x+1=-6(x-1/3)(x+1/2)
4,4(43 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ