Для вычисления пары чисел которые будут решением этого уравнения мы применим один из решения системы уравнений:
5x - 3y = 0;
3y + 4x = 27.
Осмотрев оба уравнения системы мы лицезреем, что перед переменной y стоят в обеих уравнениях обоюдно противоположные коэффициенты.
Сложим почленно два уравнения системы и получим:
5x + 4x = 0 + 27;
y = (27 - 4x)/3.
Так же из второго уравнения мы выразили переменную y через x.
Решаем 1-ое уравнение системы:
9x = 27;
x = 27 : 9;
x = 3.
Система уравнений:
x = 3;
y = (27 - 4 * 3)/3 = (27 - 12)/3 = 15/3 = 5.
Объяснение:
Объяснение:
Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba. Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней: ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней. ▸ Теорема Виета для квадратного уравнения: Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение: ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2). ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2. ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен. ▸ Полезные формулы сокращенного умножения: x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией
А) ху^2-x^2у
Это правильный ответ