Уравнение имеет два одинаковых корня тогда,когда дискриминант равен нулю.Понятно, что уравнение должно быть квадратным.Давай посмотрим, а что если a=-2, главный коэффициент будет равен нулю и уравнение квадратным уже не будет,но тогда получим следующее выражение: (-2+2)x^2+2(-2+2)x+2=0 0*x^2+0*x+2=0 Видно,что при а=-2 квадратное уравнение не имеет смысла. Значит, "а" не должно равняться -2. А если "а" не равно "-2", то перед нами квадратное уравнение относительно "x". Напомню, что дискриминант должен быть равным нулю. Решим это равенство: D= [2(a+2)]^2-4(a+2)*2=0 (2a+4)^2-8(a+2)=0 4a^2+16a+16-8a-16=0 4a^2+8a=0 (разделим все члены уравнения на "4") a^2+2a=0 a(a+2)=0 a=0 U a=-2( посторонний корень) ответ:a=0
График первой функции - это парабола, симметричная относительно ои Оу, ветвями вверх, с вершиной в точке (0;25); график второй ф-ции - прямая, проходящая через начало координат, и имеющая наклон к оси Ох в зависимости от а; поэтому приравниваем эти два уравнения, находим дискриминант, равный 0 и определяем а: 9х² + 25 = ах 9х²-ах+25=0 D= a² - 4*9*25 = 0 a² = 900 a=+-30 значит, при а=-30 и а=30 график функции у=ах будет касаться параболы, т.е. иметь общую точку с параболой, поэтому а должно быть отлично от данных значений.
Объяснение:
лайк настя не жазды а также