Для построение этого вида функций, которые под знаком модуля содержат всю функцию, можно построить отдельно функцию, которая находится под знаком модуля, а затем отобразить относительно оси Ох ту ее часть, для которой значения у – отрицательные. Это позволит получить положительные значения у для всей функции.
Итак, построим параболу, которая будет графиком заданной функции без знака модуля:
у1 = 6x – 5 – x^2.
Сначала найдем ее вершину с формулы х = –b / (2a):
х = –6 / (2*(–1)) = 3
Вычислим значение функции:
у1(3) = 6*3 – 5 – 3^2 = 4.
Получили в точке (3; 4).
Точки пересечения с осью Ох найдем, подставив в уравнение для у1 значение у1 = 0 и решив полученное уравнение:
6x – 5 – x^2 = 0
По теореме Виета или любым другим доступным находим, что корнями уравнения будут значения 1 и 5. Значит функция пересечет ось Ох в точках (1; 0) и (5; 0).
Построенный график – это график функции у1 = 6x – 5 – x^2.
Теперь отображаем относительно оси Ох все, что находится под ней, и получаем график функции у = |6x – 5 – x^2|.
Построить график можно и другим подставляя значения х в заданную функцию с модулем. Но проведенный анализ Вам понять сущность модуля при построении графиков.
Объяснение:
Я к примеру объяснил.
сокращать(округлять) десятичные дроби можно до десятых-один знак после запятой, сотых- два знака, тысячных- три знака и дальше соответственно.
твоё число 156,79571212, сократим до сотых. следовательно, у нас после запятой должно остаться 2 циферки. Теперь, внимание, алгоритм. Смотрим на цифру, стоящую после, тех самых двух что должны остаться(Х). В нашем случае Х это 5. Так вот, ели это цифра Х меньше 5 (0,1,2,3,4), то те самые две циферки после запятой прямиком как есть идут в ответ, если же цифра Х равна 5 или больше (5,6,7,8,9) прибавляем к нашему числу из двух знаков единицу. Это и будет ответом.
156,79571212 до сотых = 156,80 (до сотых, след 2 цифры после запятой; 5,след. +1; 79+1=80)