Подставим значение переменной x, данное по условию, в уравнение и найдем значение c, решив полученное линейное уравнение с одной переменной:
2 * (-3)^2 + 7 * (-3) + c = 0;
2 * 9 – 21 + c = 0;
18 – 21 + c = 0;
c – 3 = 0;
c = 3.
Чтобы найти второй корень уравнения, данного по условию, подставим в него найденное значение c и решим полученное уравнение с одной переменной второй степени:
2 * x^2 + 7 * x + 3 = 0.
Найдем дискриминант:
D = 7^2 – 4 * 2 * 3 = 49 – 24 = 25.
x1 = (- 7 + 5)/(2 * 2) = - 2/4 = - 1/2;
x2 = (- 7 – 5)/(2 * 2) = - 12/4 = - 3.
ответ: c = 3; x = - 1/2.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так