Рациональным числом называется такое число,которое не представляется в виде бесконечной периодической дроби. А вот иррациональное - бесконечная периодическая дробь. Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа. Вот,например случай 2)-рациональное,очевидно,это 13. Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное. В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь) Из 1,6 корень не извлечём. Хочется 4 приплести,да не выйдет. Не так давно объясняла другому человеку случай 4). Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ. Здесь 1 запятая после запятой.Случай 1 вылетает.
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
Объяснение:
1)
x+4≠0
x≠ -4
Домножим на x+4
x²-2(x+4)=0
x²-2x-8=0
a = 1
b = -2
c = -8
D = b²-4ac = 4+32=36
√36=6
x = (2±6)/2 = 4 ; -2
Оба корня подходят.
2)
Домножим на 4:
x²-4-2(2x+3)=0
x²-4-4x-6=0
x²-4x-10=0
a = 1
b = -4
c = -10
D = b²-4ac = 16+40=56
√56 = 2√14
x = (4±2√14)/2 = 2±√14