ответ: x = 14.
Объяснение: одно дело "выразить икс" и совсем другое - решить уравнение)) можно найти икс, постепенно выполняя обратные действия (не раскрывая скобок):
1) делимое = произведению делителя и частного: 1.2*(12_2/3) = (6/5)*(38/3) = 76/5
2) слагаемое = разности суммы и другого слагаемого: (76/5)-6.2 = (76/5)-(31/5) = 45/5 = 9
3) чтобы найти делитель (это самая внутренняя скобка), нужно делимое разделить на частное:
(3_9/16):9 = (57/16)*(1/9) = (19/16)*(1/3) = 19/48
4) уменьшаемое = разность + вычитаемое: (19/48)+(7/24) = (19+14)/48 = 33/48 = 11/16
5) 2.75:(11/16) = (11/4)*(16/11) = 4
получили: х:(2/7) - 45 = 4
x:(2/7) = 45+4=49
x = 49*(2/7) = 14
и всегда полезно делать проверку:
14:(2/7) = 14*7/2 = 7*7 = 49
49-45 = 4
(2.75)/4 = (11/4)*(1/4) = 11/16
(11/16)-(7/24) = (33-14)/48 = 19/48
(3_9/16):(19/48) = (57/16)*(48/19) = 3*3 = 9
9+6.2 = 15.2
(15.2):(12_2/3) = (76/5)*(3/38) = 6/5 = 12/10 = 1.2
а выразить икс гораздо сложнее...
(1+cos2x)/2 +(1+cos2y)/2 -(1-cos2(x+y))/2 = 2cosx ;
1+cos2x +1+cos2y -1+cos2(x+y) = 4cosx ;
(1+cos2(x+y) ) +(cos2x +cos2y )= 4cosx ;
2cos²(x+y) +2cos(x+y)cos(x-y) = 4cosx ;
2cos(x+y)( cos(x+y)+cos(x-y)) = 4cosx ;
2cos(x+y)*2 cosx*cosy = 4cosx ;
4cosx (cos(x+y)cosy -1) =0 ;
а) cosx =0 ;
x =π/2 +πk , k∈Z .
б) cos(x+y)cosy -1 =0 ⇔ cos(x+y)cosy=1 .
б₁) {cos(x+y) = -1 ; cosy= -1.
{ x+y =π+2πk ; y = π+2πn ⇒{x=2π(k -n) ; y = π+2πn .
б₂) {cos(x+y) =1 ; cosy= 1 ;
{x+y =2πk ; y = 2πn ⇒{x=2π(k -n) ; y = 2πn .