ответ:Линейной функцией называется функция вида y = k * x + b, где x – независимая переменная, k и b – любые числа.
а) Рассмотрим функцию у = (4 * х – 7) : 2. Перепишем формулу данной функции в виде у = (4 * х) : 2 – 7 : 2 = 2 * х – 3,5. Ясно, что если принять k = 2 и b = –3,5, то получаем вид линейной функции из п. 1. Следовательно, данная функция является линейной функцией.
б) Рассмотрим функцию у = 3 * (х + 8). Перепишем формулу данной функции в виде у = 3 * х + 3 * 8 = 3 * х + 24. Ясно, что если принять k = 3 и b = 24, то получаем вид линейной функции из п. 1. Следовательно, данная функция является линейной функцией.
в) Рассмотрим функцию у = х * (6 – х). Перепишем формулу данной функции в виде у = х * 6 – х * х = 6 * х – х². Данная функция не является линейной функцией, так как в её составе наряду с линейным выражением (6 * х) имеется и нелинейное выражение (–х²).
г) Рассмотрим функцию у = х * (9 – х) + х². Перепишем формулу данной функции в виде у = х * 9 – х * х + х² = 9 * х. Ясно, что если принять k = 9 и b = 0, то получаем вид линейной функции из п. 1. Следовательно, данная функция является линейной функцией.
Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
ответ:Линейной функцией называется функция вида y = k * x + b, где x – независимая переменная, k и b – любые числа.
а) Рассмотрим функцию у = (4 * х – 7) : 2. Перепишем формулу данной функции в виде у = (4 * х) : 2 – 7 : 2 = 2 * х – 3,5. Ясно, что если принять k = 2 и b = –3,5, то получаем вид линейной функции из п. 1. Следовательно, данная функция является линейной функцией.
б) Рассмотрим функцию у = 3 * (х + 8). Перепишем формулу данной функции в виде у = 3 * х + 3 * 8 = 3 * х + 24. Ясно, что если принять k = 3 и b = 24, то получаем вид линейной функции из п. 1. Следовательно, данная функция является линейной функцией.
в) Рассмотрим функцию у = х * (6 – х). Перепишем формулу данной функции в виде у = х * 6 – х * х = 6 * х – х². Данная функция не является линейной функцией, так как в её составе наряду с линейным выражением (6 * х) имеется и нелинейное выражение (–х²).
г) Рассмотрим функцию у = х * (9 – х) + х². Перепишем формулу данной функции в виде у = х * 9 – х * х + х² = 9 * х. Ясно, что если принять k = 9 и b = 0, то получаем вид линейной функции из п. 1. Следовательно, данная функция является линейной функцией.
Объяснение: