М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Stoianova1988
Stoianova1988
15.12.2020 23:43 •  Алгебра

решить эти уравнения. Не получается у нас(


решить эти уравнения. Не получается у нас(

👇
Открыть все ответы
Ответ:
beliy112329
beliy112329
15.12.2020
Запишем выражение в виде 2n^6 - n^4 - n^2 = n^2*(2n^4-n^2-1) = n^2*(n^2-1)*(2n^2+1) = n*n*(n-1)*(n+1)*(2n^2+1). Поскольку n*(2n^2 + 1) = 2n^3 + n = 2(n^3 - n) + 3n = 2n*(n-1)*(n+1) + 3n, то имеем n*n*(n-1)*(n+1)*(2n^2+1) = n*(n-1)*(n+1)*(2n*(n-1)*(n+1) + 3n) = 2n*n*(n-1)*(n-1)*(n+1)*(n+1) + 3n*n*(n-1)*(n+1). В первый член 2n*n*(n-1)*(n-1)*(n+1)*(n+1) входит произведение трех последовательных чисел в квадрате. Произведение n*(n-1)*(n+1) всегда кратно 6, следовательно все произведение 2n*n*(n-1)*(n-1)*(n+1)*(n+1) кратно 36. Рассмотрим член 3n*n*(n-1)*(n+1). Произведение n*(n-1)*(n+1) кратно 6, значит при четном n произведение 3n*n*(n-1)*(n+1) кратно 36. При нечетном n кратном 3 все произведение 3n*n*(n-1)*(n+1) также кратно 36, при нечетном n некратном 3, т. е. при n = 3k + 1 или n = 3k + 2, где k - натуральное, имеем два четных числа n-1 и n+1, одно из которых кратно 3, поскольку в этом случае либо n-1 = 3k+1-1 = 3k, либо n+1 = 3k+2+1 = 3k+3 =3(k+1) и значит и в этом случае произведение 3n*n*(n-1)*(n+1) кратно 36. Т. о. оба члена 2n*n*(n-1)*(n-1)*(n+1)*(n+1) и 3n*n*(n-1)*(n+1) кратны 36, а значит и их сумма 2n*n*(n-1)*(n-1)*(n+1)*(n+1) + 3n*n*(n-1)*(n+1) кратна 36. Следовательно выражение 2n^6 - n^4 - n^2 делится на 36.
4,8(74 оценок)
Ответ:
SaviRay
SaviRay
15.12.2020

Приведем верхнюю дробь к общему знаменателю (а + 3) * (а – 3):

((а + 3) / (а – 3) + (а - 3) / (а + 3)) / ((3а2 + 27) / (9 – а2)) = ((а + 3) * (а + 3) / (а – 3) * (а + 3) + (а - 3) * (а – 3) / (а + 3) * (а – 3)) / ((3а2 + 27) / (9 – а2)) = ((а + 3) * (а + 3) + (а - 3) * (а – 3)) / ((а + 3) * (а – 3)) / ((3а2 + 27) / (9 – а2)) = ((а + 3)2 + (а - 3)2) / ((а + 3) * (а – 3)) / (3 * (а2 + 9)) / (9 – а2)).

Раскроем скобки в числителе верхней дроби и используем формулу разности квадратов для ее знаменателя:

(2а2 + 18) / (а2 – 9) / (3 * (а2 + 9)) / (9 – а2)) = - 2 * (а2 + 9) / (9 - а2) * ((9 – а2) / (3 * (а2 + 9))) = - 2/3.

ОТВЕТ: -2/3.

4,4(80 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ