Искомая функция .
Найдем значения искомой функции в заданных точках х:
Кроме этого, для каждого из аргументов есть еще и экспериментальное значение, которое обозначим через функцию :
Составим функцию , которая будет суммировать квадраты разностей значений функций
и
соответствующих аргументов:
Исследуем эту функцию на экстремум.
Найдем частные производные:
Необходимое условие экстремума: равенство нулю частных производных:
Домножим второе уравнение на (-3):
Складываем уравнения:
Подставим значение а во второе уравнение исходной системы:
Точка (0.5; -0.3) - предполагаемая точка экстремума.
Найдем вторые частные производные функции:
Рассмотрим выражение:
Так как и
, то точка (0.5; -0.3) является точкой минимума.
Значит, в точке (0.5; -0.3) функция имеет минимум.
Тогда, значения и
есть искомые коэффициенты функции
.
ответ:
1)2((8+x)+x)=20
8+2x=20:2
8+2х=10
2х=10-8
2х=2
х=2:2
х=1-ширина
8+х=8+1=9 - длина
2)2х+х=441
3х=441
х=441:3
х=147-второе число
3х=294-первое число
3)х+у+х-у=140+14
2х=154
х=154:2
х=77-первое число
77+у=140
у=140-77
у=63-второе число
4) х+(х+1)+(х+2)=201
3х+3=201
3х=201-3
3х=198
х= 198:3
х=66
х+1=67
х+2=68
Это числа 66,67 и 68
извини я 5 кла сожалею я бы если бы знала сказалабы