Нашей целью является нахождение точки, являющейся пересечением серединного перпендикуляра к отрезку АВ и оси Ох. А(-1;5) и В(7;-3) 1) Находим координату середины отрезка АВ:
2) Находим направленный вектор прямой АВ: s={7-(-1);-3-5} s={8;-8} 3) Находим нормаль к прямой АВ: n={-(-8);8} n={8;8} Сократим координаты на число 8, получим координаты нормали: n={1;1} 4) Составим уравнение серединного перпендикуляра к прямой АВ: (x-3)/1 = (y-1)/1 x-3=y-1 x-y-2=0 5) По условию, искомая точка лежит на оси Ох, значит ордината этой токи равна нулю. Ищем абсциссу: х-0-2=0 х=2 Итак, точка (2;0) - искомая
При x < -2 будет |x-1| = 1 - x; |x+2| = -x - 2 y = |x-1| - |x+2| = 1 - x - (-x - 2) = 1 - x + x + 2 = 3 При -2 <= x < 1 будет |x+2| = x + 2; |x-1| = 1 - x y = 1 - x - (x + 2) = 1 - 2x - 2 = -2x - 1 При x >= 1 будет |x-1| = x - 1; |x+2| = x + 2 y = x - 1 - (x + 2) = x - 1 - x - 2 = -3 Получается: при x < -2 y = 3; при -2 <= x < 1 y = -2x - 1; при x >= 1 y = -3 При k >= 0 прямая пересекается в 1 точке. При -2 < k < 0 прямая пересекается с графиком в 3 точках. При k = -2 прямая совпадает с частью графика на промежутке [-2; 1]. При k < -2 прямая опять пересекается с графиком в 1 точке.
ответ: -20b в 5 степени c в 7
Объяснение: