пусть собственная скорость катера будет = х км/ч, а скорость течения реки = у км/ч
значит скорость катера по течению реки составит: (х+у) км/ч, а против течения (х-у) км/ч
за 1 час по течению катер проплыл 18 км => 1*(x+y) = 18
против течению катер плыл такое же рассстояние, но за 1,5 часа (2,5 - 1) ,т.е. 1,5(х-у) = 18
объединим полученные уравнение в систему и решим их
{ 1*(x+y) = 18
{1,5(х-у) = 18
***
{х = 18 - у
{ 27 - 3у = 18
***
{ у = 3
{ х = 15
скорость течения реки 3 км/ч, а собственная скорость катера 15 км/ч
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)