а) x² + 4x + 10 ≥ 0
D = 4² - 4· 10 = - 24
График функции у = x² + 4x + 10 - парабола веточками вверх, пересечения с осью Ох нет, т.к. D < 0, поэтому у > 0 и ответ
2) Решением неравенства является вся числовая прямая
b) -x² + 10x - 25 > 0
-(х - 5)² > 0
Поскольку -(х - 5)² < 0 при любых х, то ответ
1) Неравенство не имеет решений
c) x² + 3x + 2 ≤ 0
D = 3² - 4 · 2 = 1
x₁ = 0.5(-3 - 1) = -2
x₂ = 0.5(-3 + 1) = -1
График функции у = x² + 3x + 2 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = -1 поэтому решением неравенства является интервал [-2; -1] , и ответ
4) Решением неравенства является закрытый промежуток.
d) -x² + 4 < 0
x² - 4 > 0
График функции у = x² - 4 - парабола веточками вверх, пересекает ось Ох в точках с координатами x₁ = -2 и x₂ = 2 поэтому решением неравенства является интервалы (-∞; -2) и (2; +∞) , и ответ
6) Решением неравенства является объединение двух промежутков
Объяснение:
За три года прибыль составит:
3•( рх–(0,5х²+2х+6)).Так как за это время должно окупиться строительство нового цеха, то эта прибыль должна быть не менее 78млн. руб.
Составим неравенство:
3•( рх–(0,5х²+2х+6)) ≥ 78.
Запишем неравенство для р.
После преобразований получим: р≥(0,5х)+2+(32/х) .
Наименьшее значение р=0,5х+2+(32/х) .
Найдем при каком х оно достигается.
Применяем производную.
р`(x)=(0,5х+4+(32/x) )'=0,5–(32/x²).
р`=0.
Найдем критическую точку: 0,5– (32/x²) =0.
х=8 или х=–8(отрицательное значение не удовл. условию, х – натуральное число).
Вычислим наименьшее значение р при х=8
р(8) = 0,5∙8+2+(32/8) = 10.
О т в е т. р=10.
x10=1/24
q=1/3
x10=b1* q^9
b1=x10/q^9=(1/243 ) / (1/19683)=81