Общая формула прямой: y=kx+b, где k - угол наклона к оси Ох, а b - смещение по у.
Найдем сначала k: k = тангенсу угла, образованного прямой и осью Ох. Образуем прямоуг. треугольник (как угодно), чтобы найти тангенс. Самый простой - "верхняя часть" показанной функции. Тангенс = 4 (катет = 4 поделить на катет = 1)
Если без тангенса, то можно вычислить логически: за ∆х = 1, ∆у = 4, k - это "скорость" возрастания функции, следует k = 4.
b найти еще проще, смещение по у = -4, следует b = -4.
Иначе, чтобы найти b, нужно чтобы формула приняла вид y = b, такое возможно при х =0. Находим на графике координаты у при х = 0, у = -4, следует b = -4.
24 минуты = 24/60 часа = 4/10 часа = 0,4 часа. Пусть х - намеченная скорость. Тогда х-10 - сниженная скорость. 4х - расстояние между городами. 2х - длина части пути, пройденная с намеченной скоростью. 4х-2х - длина части пути, пройденная со сниженной скоростью. (4х-2х)/(х-10)- время, затраченное на часть пути со сниженной скоростью. Уравнение: 2 + (4х-2х)/(х-10) = 4 + 0,4 2 + 2х/(х-10) = 4,4 2х/(х-10) = 4,4-2 2х/(х-10) = 2,4 2х = 2,4(х-10) 2х = 2,4х - 24 2,4х-2х = 24 0,4х = 24 х = 24:0,4 х = 60 км/ч - первоначальная скорость автомобиля. ответ: 60 км/ч.
Проверка: 1) 60•4=240 км - расстояние между городами. 2) 2•60 = 120 км - длина пути, пройденная с намеченной скоростью. 3) 60-10=50 км/ ч - сниженная скорость. 4) 2+0,4 = 2,4 часа время езды со сниженной скоростью. 5) 50•2,4 = 120 км - длина пути, пройденная со сниженной скоростью. 6) 120+120=240 км - длина всего пути.
Общая формула прямой: y=kx+b, где k - угол наклона к оси Ох, а b - смещение по у.
Найдем сначала k: k = тангенсу угла, образованного прямой и осью Ох. Образуем прямоуг. треугольник (как угодно), чтобы найти тангенс. Самый простой - "верхняя часть" показанной функции. Тангенс = 4 (катет = 4 поделить на катет = 1)
Если без тангенса, то можно вычислить логически: за ∆х = 1, ∆у = 4, k - это "скорость" возрастания функции, следует k = 4.
b найти еще проще, смещение по у = -4, следует b = -4.
Иначе, чтобы найти b, нужно чтобы формула приняла вид y = b, такое возможно при х =0. Находим на графике координаты у при х = 0, у = -4, следует b = -4.
Подставляем в формулу:
y = 4x - 4