(8b-8) (8b+8)-8b(8b+8)=64b²-64-64b²-64b=-64(1+b)=-64*3.6=-230.4 (8b-8) (8b+8)-8b(8b+8)=(8b+8)(8b-8-8b)=-64(b+1)=-64*3.6=-230.4 первое решение - раскрыли скобки, второе - вынесли общий множитель. Возьми, что больше устроит
Уравнение четвёртой степени имеет вид: Разделим обе части на коэффициент , получаем где a, b, c, d – произвольные вещественные числа.
Уравнения вида приводится уравнение четвёртой степени, у которых отсувствует третьей степени., поэтому нужно сделать замену переменных, тоесть , где - коэффициент перед х^3 и 4 - произвольные вещественные числа
В нашем случае такое уравнение: Заменим , получаем
Получаем кубическое уравнение: В нашем случае: Подставляем и получаем уравнение Разложим одночлены в сумму нескольких Выносим общий множитель Уравнение 16s²+288s+3343=0 решений не имеет, так как D<0
Таким образом для решения уравнения остается квадратное уравнение Заменяем
Обозначим а ---скорость первого пешехода в км/час b ---скорость второго пешехода в км/час t ---время в пути до встречи (для обоих пешеходов оно одинаковое))) тогда до встречи первый часть пути =(a*t) км до встречи второй часть пути =(b*t) км после встречи первый оставшуюся ему часть пути за 4 часа b * t / a = 4 отсюда: t = 4 * a / b после встречи второй оставшуюся ему часть пути за 9 часов a * t / b = 9 a*4*a / b² = 9 a / b = 3 / 2 t = 4*3/2 = 2*3 = 6 ответ: первый был в пути 4+6 = 10 часов второй был в пути 9+6 = 15 часов 6 часов они шли до встречи...
(8b-8) (8b+8)-8b(8b+8)=(8b+8)(8b-8-8b)=-64(b+1)=-64*3.6=-230.4
первое решение - раскрыли скобки, второе - вынесли общий множитель. Возьми, что больше устроит