№4
найдем нули функции
0=х²-4х+3
D=(-4)²-4×3×1=4
x=(4±√4)÷2= 3 или 1
a=1>0⇒ ветви параболы вверх ⇒ y>0 x∈(-∞;1)∪(3;∞)
y<0 (1;3)
№6
я тебе график не построю но с аргументом
также находим нули функции
0=х²-4
0=(х-2)(х+2) ⇒х=±2
а=1>0 ⇒ ветви параболы вверх ⇒y>0 (-∞;-2)∪(2;∞)
№5
y=-x²+6x-5
найдем ось симметрии m=-b/2a=-6÷(2×(-1))=3
a=-1<0 ⇒ ветви вниз ⇒ функция возрастает (-∞;3)
функция убывает(3;∞)
№7
g(x)=-4x²+16x-3
a=-4<0 ⇒ ветви вниз ⇒ самое наибольшее значение y будет получаться при самом наименьшем значении х ⇒ряд по убыванию таков: f(2) , f(5) ,f(8.1) , f(11.8)
а) 4x² - 4x - 15 < 0
D = b² - 4ac = 16 + 4*4*15 = 16 + 240 = 256
x₁ = (-b + √D) / 2a = (4 + 16) / 8 = 20 / 8 = 2,5
x₂ = (-b - √D) / 2a = (4 - 16) / 8 = -12 / 8 = -1,5
(x - 2,5)(х + 1,5) < 0
{ x < 2,5
{ x < -1,5
ответ: (-1,5; 2,5)
б) x² - 81 > 0
(x - 9)(x + 9) > 0
{ x > -9
{ x > 9
ответ: (-9; 9)
в) x² < 1,7х
x² - 1,7х < 0
х(x - 1,7) < 0
{ x < 0
{ x < 1,7
ответ: (0; 1,7)
г) x( x + 3) - 6 < 3 (x + 1)
x² + 3x - 6 - 3x - 3 < 0
x² - 9 < 0
(x - 3)(x + 3) < 0
{ x < -3
{ x < 3
ответ: (-3; 3)
10x+7=8x-9
10x-8x=-9-7
2x=-16
x=-8