М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilyassovaalina235393
ilyassovaalina235393
13.04.2021 03:17 •  Алгебра

5(корень из 12)*4(корень из 2)/25(корень из 6)

👇
Ответ:
timur123123
timur123123
13.04.2021

5(корень из 12)*4(корень из 2)/25(корень из 6) = (20*2*(корень из 6))/(25(корень из 6)) = 40/25=8/5

4,4(28 оценок)
Открыть все ответы
Ответ:
Ками5
Ками5
13.04.2021
Думаю, что нет скобок на месте. Неравенство скорее всего выглядит так:
(x^2-6x)/5+5/(x^2-6x+10)>=0
Делаем замену:
x^2-6x=t⇒t/5+5/(t+10)>=0
5*(t+10) - общий знаменатель. После приведения к общему знаменателю дробь выглядит так:
(t*(t+10)+25)/(5*(t+10))>=0; умножаем обе части на 5⇒
(t^2+10t+25)/(t+10)>=0⇒((t+5)^2)/(t+10)>=0⇒(t+5)^2*(t+10)>=0 и t≠-10
Равенство нулю достигается при t=-5 и t=-10
Эти значения разбивают числовую ось на 3 интервала:
(-беск; -10); (-10;-5]; (-5;+беск)
По методу интервалов в крайнем справа будет +.
-5 корень четной кратности⇒в интервале (-10; -5] тоже будет +
В крайнем слева будет -.
Решением неравенства является интервал (-10; +беск), т.е. t>-10
Этот же результат можно получить еще проще.
Дробь положительна, если числитель и знаменатель имеют одинаковые знаки. Видим, что числитель >=0 для всех t, значит и знаменатель должен быть >0, т.е. t>-10
Возвращаемся к переменной x.
x^2-6x>-10⇒x^2-6x+10>0
график - парабола, ветви направлены вверх
D=b^2-4ac=36-40<0⇒неравенство верно для всех x
Так как неравенство нестрогое,то находим решение уравнения
x^2-6x=-5⇒x^2-6x+5=0⇒x1=5; x2=1
4,4(76 оценок)
Ответ:
MasterDrenZik
MasterDrenZik
13.04.2021
Функции  и построить ее график.

1) Функция определена всюду, кроме точек .

2) Функция нечетная, так как f(-x) = -f(x), и, следовательно, ее график симметричен относительно начала координат. Поэтому ограничимся исследованием только для 0 ≤ x ≤ +∞.

3) Функция не периодическая.

4) Так как y=0 только при x=0, то пересечение с осями координат происходит только в начале координат.

5) Функция имеет разрыв второго рода в точке , причем , . Попутно отметим, что прямая  – вертикальная асимптота.

6) Находим  и приравниваем ее к нулю: , откуда x1 = -3, x2 = 0, x3 = 3. На экстремум надо исследовать только точку x=3 (точку x2=0 не исследуем, так как она является граничной точкой промежутка [0, +∞)).

В окрестности точки x3=3 имеет: y’>0 при x<3 и y ’<0 при x>3, следовательно, в точке x3 функция имеет максимум, ymax(3)=-9/2.

Найти первую производную функции

Для проверки правильности нахождения минимального и максимального значения.

7) Находим . Видим, что y’’=0 только при x=0, при этом y”<0 при x<0 и y”>0 при x>0, следовательно, в точке (0,0) кривая имеет перегиб. Иногда направление вогнутости может измениться при переходе через разрыв кривой, поэтому следует выяснить знак y” и около точек разрыва функции. В нашем случае y”>0 на промежутке (0, ) и y”<0 на (, +∞), следовательно, на (0, ) кривая вогнута и выпукла на (, ∞).

Найти вторую производную функции

8) Выясним вопрос об асимптотах.

Наличие вертикальной асимптоты  установлено выше. Ищем горизонтальные: , следовательно, горизонтальных асимптот нет.

Найдем наклонные асимптоты: , , следовательно, y=-x – наклонная двусторонняя асимптота.

9) Теперь, используя полученные данные, строим чертеж:
4,7(41 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ