До обеда:
Объем работы 200 кустов
Производительность труда х кустов/час
Время работы ( 200/х ) часов
После обеда :
Объем работы 90 кустов
Производительность (х -20) кустов/час
Время работы 90/(х - 20) часов.
Зная, что на всю работу потрачено 7 часов, составим уравнение:
200/х + 90/(х -20) = 7
знаменатель не должен быть равен 0 :
х≠ 0 ; х≠ 20
избавимся от знаменателей, умножим обе части уравнения на х(х-20):
200(х-20) + 90х = 7х(х-20)
200х - 4000 + 90х = 7х² - 140х
290х - 4000 = 7х² - 140х
7х² - 140х - 290х + 4000 = 0
7х² - 430х + 4000 = 0
D = ( - 430)² - 4*7*4000 = 184900 - 112000 = 72900 = 270²
D>0
x₁ = ( - (-430) - 270)/(2*7) = (430 - 270)/14 = 160/14 = 80/7 = 11 ³/₇ не удовл. условию задачи ( т.к. < 20 )
х₂ = ( - (-430) +270)/(2*7) = (430 + 270)/14 = 700/14 = 50 (кустов/час)
Проверим:
200/50 + 90/(50 - 20) = 4 + 3 = 7 (часов)
ответ: по 50 кустов в час высаживала Валентина до обеда.
Вроде так. ( это у меня было написано в заметках, потому что мы тоже писали эту задачу, вот я и скопировала и вставила сюда).
S1=S2 =>S2=V2t2 =>t2=S2÷V2, V2=V-10, S2=40 км => t2=40÷(V-10).
t2-t1=1/3 => 40÷(V-10) - 40÷v=1/3. Приводим дроби к общему знаменателю.
40V-40V+400÷(V²-10V)=1/3 => 400÷(V²-10V)=1/3 => V²-10v=400÷1/3 => V²-10V= 1200 => V2-10V-1200=0, a=1,b=-10,c=-1200, D = b² - 4ac= (-10)²-4×1×-1200=4900,=> 2 корня. V1 = (-b + √D)/2a=(10+70)÷2=40 км/ч , V2 = (-b - √D)/2a=(10-70)/2=-30 км/ч - не подходит, так как скорость положительная величина.=> V=40 км/ч.