Думаю, что нет скобок на месте. Неравенство скорее всего выглядит так: (x^2-6x)/5+5/(x^2-6x+10)>=0 Делаем замену: x^2-6x=t⇒t/5+5/(t+10)>=0 5*(t+10) - общий знаменатель. После приведения к общему знаменателю дробь выглядит так: (t*(t+10)+25)/(5*(t+10))>=0; умножаем обе части на 5⇒ (t^2+10t+25)/(t+10)>=0⇒((t+5)^2)/(t+10)>=0⇒(t+5)^2*(t+10)>=0 и t≠-10 Равенство нулю достигается при t=-5 и t=-10 Эти значения разбивают числовую ось на 3 интервала: (-беск; -10); (-10;-5]; (-5;+беск) По методу интервалов в крайнем справа будет +. -5 корень четной кратности⇒в интервале (-10; -5] тоже будет + В крайнем слева будет -. Решением неравенства является интервал (-10; +беск), т.е. t>-10 Этот же результат можно получить еще проще. Дробь положительна, если числитель и знаменатель имеют одинаковые знаки. Видим, что числитель >=0 для всех t, значит и знаменатель должен быть >0, т.е. t>-10 Возвращаемся к переменной x. x^2-6x>-10⇒x^2-6x+10>0 график - парабола, ветви направлены вверх D=b^2-4ac=36-40<0⇒неравенство верно для всех x Так как неравенство нестрогое,то находим решение уравнения x^2-6x=-5⇒x^2-6x+5=0⇒x1=5; x2=1
В решении.
Объяснение:
Решить системы уравнений:
1)8у-х=4
2х-21у=2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
-х=4-8у
х=8у-4
2(8у-4)-21у=2
16у-8-21у=2
-5у=10
у=10/-5
у= -2;
х=8у-4
х=8*(-2)-4
х= -20.
Решение системы уравнений (-20; -2).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2)2х-у=0,5
8х-5у=13
Выразить у через х в первом уравнении, подставить выражение во второе уравнение и вычислить х:
-у=0,5-2х
у=2х-0,5
8х-5(2х-0,5)=13
8х-10х+2,5=13
-2х=10,5
х=10,5/-2
х= -5,25;
у=2х-0,5
у=2*(-5,25)-0,5
у= -10,5-0,5
у= -11;
Решение системы уравнений (-5,25; -11).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
3)4u+3v=14
5u-3v=25
Разделить первое уравнение на 4 для упрощения:
u+0,75v=3,5
5u-3v=25
Выразить u через v в первом уравнении, подставить выражение во второе уравнение и вычислить v:
u=3,5-0,75v
5(3,5-0,75v)-3v=25
17,5-3,75v-3v=25
-6,75v=7,5
v=7,5/-6,5 (нацело не делится)
v=7 и 5/10 : (-6 и 3/4)
Перевести дроби в неправильные:
v=75/10 : (-27/4)
v= -(75*4)/(10*27)
v= -10/9;
u=3,5-0,75v
u=3,5-0,75*(-10/9)
u=3 и 1/2-3/4*(-10/9)
u=3 и 1/2 + 5/6
u=4 и 1/3
u=13/3.
Решение системы уравнений (-10/9; 13/3).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
4)10p+7q= -2
2p-22=5q
Разделить первое уравнение на 10 для упрощения:
p+0,7q= -0,2
2p-22=5q
Выразить p через q в первом уравнении, подставить выражение во второе уравнение и вычислить q:
p= -0,2-0,7q
2(-0,2-0,7q)-22=5q
-0,4-1,4q-22=5q
-1,4q-5q=22,4
-6,4q=22,4
q=22,4/-6,4
q= -3,5;
p= -0,2-0,7q
p= -0,2-0,7*(-3,5)
p= -0,2+2,45
p= 2,25.
Решение системы уравнений (2,25; -3,5).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.