Если площадь s(x) фигуры x разделить на площадь s(a) фигуры a , которая целиком содержит фигуру x, то получится вероятность того, что точка, случайно выбранная из фигуры x, окажется в фигуре a. обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 15.00 до 16.00 равно 60 мин. в прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата oabc. друзья встретятся, если между моментами их прихода пройдет не более 13 минут, то есть y-x< 13, y< x+13 (y> x) и x-y< 13 , y> x-13 (y< x).этим неравенствам удовлетворяют точки, лежащие в области х.для построения области х надо построить прямые у=х+13 и у=х-13.затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-13.кроме этого точки должны находиться в квадрате оавс.площадь области х можно найти, вычтя из площади квадрата оавс площадь двух прямоугольных треугольников со сторонами (60-13)=47: s(x)=s(oabc)-2*s(δ)=60²-2*1/2*47*47=3600-2209=1391.
Пусть первый рабочий изготавливал х деталей в день, тогда второй - у деталей. Получим уравнение: 4у -3х =4 9х + 14у = 638 Решим систему уравнений: умножим первое уравнение на 3 и сложим со вторым, получим: 28у=650 у= 25. найдём х из первого уравнения: 4*25 - 3х =4 -3х= -96 х= 32 Итак, первый изготавливал 32 детали а второй 25 деталей.
ответ:796
Объяснение:-32(-16-4)-6(-24-2)=-32*(-20)-6*(-26)=640+156=796