Предлагаю 1)используя формулы комбинаторики. В данном случае формула размещений: всего нечетных цифр - 5, их надо разместить по 3 цифры: n=5; k=3 ответ: 60 2) логический пусть трехзначное число будет a.b.c среди цифр от 0 до 9: 1,3,5,7,9 - нечетные 0,2,4,6,8 - четные значит на место одной из цифр a, b или c можно будет поставить 5 нечетных цифр. Но так как цифры не должны повторяться, для каждой следующей цифры, количество вариантов будет уменьшатся на 1. Это значит: для c - 5 вариантов, значит для b - будет 5-1=4 варианта, для a будет соответственно 4-1=3 варианта в числе a.b.c - цифра a будет принимать значения: 1,3,5,7,9 цифра b при каждом значении a: 1,3,5,7,9 исключая цифру а, аналогично и с c, исключая цифру из a и b, всего таких чисел будет 5*4*3=60 ответ: 60
(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410 25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410 169х²+90х+34≤ 203х²-165х+459 169х²-203х²+90х+165х+34-459 ≤ 0 -34х²+255х-425≤0 ( : -17) 2х²-15х+25≥0 D=225-200=25=(5)² x1=(15+5)/4=5 х2=5/2=2,5 2(х-5)(х-2,5)≥0 (:2) (х-5)(х-2,5)≥0 2,55 х + - + нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞ точки 2,5 и 5 тоже входят , так как неравенство не строгое тогда запишем : х∈(-∞;2,5]U[5;+∞)