Область определения функции: множество всех действительных чисел, т.е. D(y) = R или D(y) = (-∞;+∞). б) Функция существует, когда подкоренное выражение неотрицательно
Наибольшее число попыток - это когда нужно перебрать ВСЕ возможные варианты (комбинации). 1. Количество всех возможных вариантов набора = 10^4 = 10000. Я поясню почему так: четыре позиции, каждая позиция может принимать 10 возможных значений (цифры от 0 до 9 - десять цифр). Для одной позиции = 10 вариантов. Для двух позиций: для каждого из десяти вариантов первой позиции есть десять вариантов второй позиции, всего = 10*10 = 100. Для трех позиций: для каждого из 100 вариантов первых двух позиций есть еще 10 вариантов третьей позиции, всего = 100*10 = 1000 вариантов. Для четырех: для каждого из 1000 вариантов первых трех позиций есть 10 вариантов четвертой позиции, то есть всего = 1000*10 = 10000 вариантов. 2. Аналогично первому: есть две позиции, каждая позиция может принимать 10 значений (цифры от 0 до 9 - десять цифр). Для одной позиции = 10 вариантов. Для двух позиций: каждому варианту для первой позиции соответствует еще 10 вариантов второй позиции, всего 10*10 = 100 вариантов (комбинаций).
Ищется также, как локальные минимумы и максимумы. 1) Находим точки, где производная от функции не определена. 2) Находим точки, где производная от функции равна 0. 3) Вычисляем значения функции во всех этих точках. 4) Сравниваем значения и находим самое большое и самое маленькое.
Примеры: 1) y = |x|. При x < 0 y ' = -1; при x > 0 y ' = 1 При x = 0 производная не определена. y(0) = 0. Это глобальный минимум. 2) y = 18x^4 - 24x^3 - x^2 + 2x + 1 Производная y ' = 72x^3 - 72x^2 - 2x + 2 = 2(x - 1)(36x^2 - 1) = 2(x - 1)(6x - 1)(6x + 1) = 0 x1 = 1; y(1) = 18 - 24 - 1 + 2 + 1 = -4 - минимум x2 = -1/6; y(-1/6) = 18/6^4 + 24/6^3 - 1/36 - 2/6 + 1 ~ 0,764 x3 = 1/6; y(1/6) = 18/6^4 - 24/6^3 - 1/36 + 2/6 + 1 ~ 1,2083 - максимум 3) y = x*sin x Производная y ' = sin x + x*cos x = 0 Периодическая функция, решения такие: x ~ -11; -8; -5; -2; 0; 2; 5; 8; 11; ... Значения: y(+-11) ~ 2; y(+-8) ~ 1,1; y(+-5) ~ 0,43; y(+-2) ~ 1,8; y(0) = 0 Кажется, здесь глобальных минимума и максимума нет. Чем больше х по модулю, тем больше у.
б) Функция существует, когда подкоренное выражение неотрицательно