решениями системы. При таком подходе задачу можно переформу-
лировать так: при каких значениях параметра a один из корней
квадратного трехчлена f (t) = t2 − 2(a + 1)t + a2 + 3a − 1 принад-
лежит интервалу (−1; 1), а второй корень расположен на числовой
оси вне этого интервала?
Из геометрической интерпретации решение последней задачи сво-
дится к решению неравенства
f (−1) · f (1) < 0 или (a2 + 5a + 2)(a2 + a − 2) < 0.
Решая последнее методом интервалов получим ответ.
√ √
ответ: a ∈ −5 − 17 ; −2 ∪ −5 + 17 ; 1
2 2
Задача 3.9. При каких значениях параметра a система
y = x2 − 2x
x2 + y 2 + a2 = 2x + 2ay имеет решения?
Решение. Перепишем исходную систему в виде
(x − 1)2 = y + 1
(x − 1)2 + (y − a)2 = 1.
Отсюда приходим к системе
(y − a)2 + y + 1 = 1 y 2 + (1 − 2a)y + a2 = 0
или
y+1 0 y −1.
Из геометрического смысла квадратного трехчлена следует, что
система будет иметь хотя бы одно решение, если совместна совокуп-
ность систем неравенств:
D = 1 − 4a 0
1
yв = a − 2 > −1
D = 1 − 4a 0
1
yв = a − 2 −1
f (−1) = a2 + 2a 0.
−1 < a 4 1
Решая системы неравенств, придем к совокупности 2
откуда получаем ответ. −2 a − 1 , 2
ответ: −2 a 4 .
Пошаговое объяснение:
Дано:
Стороны треугольника AC=2 см, AB=3 см, BC=4 см.
Найти косинусы треугольника.
По теореме косинусов квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
AB^2=AC^2+BC^2-2*AC*BC*cosC
Значит cosC= (в числителе)AC^2+BC^2-AB^2 /(в знаменатель)2*AC*BC=
=2^2+4^2-3^2 / 2*2*4 = 4+16-9 /16 = 0,6875 - это cos46°
BC^2=AC^2+AB^2-2*AC*AB*cosA
Значит cosA=(в числителе)AC^2+AB^2-BC^2 /(в знаменатель)2*AC*AB=
=2^2+3^2-4^2 /2*2*3 = 4+9-16 /12 = -0,25 - это cos105°
AC^2=BC^2+AB^2-2*BC*AB*cosB
Значит cosB=(в числителе)BC^2+AB^2-AC^2 /(в знаменатель)2*BC*AB=
=4^2+3^2-2^2 /2*4*3 = 16+9-4 /24 = 0,875 - это cos29°