В решении.
Объяснение:
На сторонах прямоугольника построены квадраты. Площадь одного квадрата на 56 см² больше площади другого. Найдите площадь прямоугольника, если известно, что длина прямоугольника на 4 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 4
у² - х² = 56
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
(х + 4)² - х² = 56
х² + 8х + 16 - х² = 56
8х = 56 - 16
8х = 40
х = 40/8
х = 5 (см) - ширина прямоугольника.
5 + 4 = 9 (см) - длина прямоугольника.
Проверка:
9² - 5² = 81 - 25 = 56 (см²), верно.
2) Найти площадь прямоугольника:
S = 9 * 5 = 45 (см²).
3x = 12
x = 4
2)12 - 2x = - 10
- 2x = - 22
x = 11
3)2x + 3 = 10
2x = 7
x = 3,5
4) 14x - 7 = 28
14x = 35
x = 2,5
5) (x - 3)(15 - x) = 0
15x - x² - 45 + 3x = 0
- x² + 18x - 45 = 0
x² - 18x + 45 = 0
D = b² - 4ac = 324 - 4×45 = 324 - 180 = √144= 12
x₁ = 18 + 12/2 = 15
x₂ = 18 - 12/2 = 3
6) (2x - 20)(3 + 3x) = 0
6x + 6x² - 60 - 60x = 0
6x² - 54x - 60 = 0
D = 2916 - 4×6 × ( - 60) = 2916 + 1440 = 4356
x₁ = 54 + 66/ 12 = 10
x₂ = 54 - 66/12 = - 1
7)( 12 - 3x)(25 - 5x) =0
300 - 60x - 75x + 15x² = 0
15x² - 135x + 300 = 0
D = 18225 - 4 × 15 × 300 = 18225 - 18000 = √225 = 15
x₁ = 135 + 15/30 = 5
x₂ = 135 - 15/30 = 4