М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
animals200027
animals200027
29.07.2021 03:22 •  Алгебра

А) {9x}^{2} - x = 0 \ \\
б)
решить неполные квадратные уравнения


5 {x}^{2} = 3x

👇
Ответ:
kingsambraking6
kingsambraking6
29.07.2021

a) x1=0

x2=1/9

б) х1=0

х2=3/5

Надеюсь поймёш

4,4(4 оценок)
Открыть все ответы
Ответ:
решите неравенство 3/(2^(2-x^2)-1)^2-4/(2^(2-x^2)-1)+1>=0

 3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1  ≥  0  ;
замена :   t = 2^(2-x²) -1
3 / t² - 4 / t  +1  ≥  0  ;
(t² - 4t +3) / t²  ≥  0 
для квадратного трехчлена  t² - 4t +3    t₁=1  корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или  t₂ =4 -1=3)  
* * * наконец  можно  и решить  уравнение t² - 4t +3=0 * * *

(t² - 4t +3) / t²  ≥  0  ⇔ (t -1)(t - 3) / t²   ≥  0 .
            +               +                        -                      +
(0) [1] [ 3]

* * * совокупность неравенств [ { t  ≤ 1 ; t ≠0  .   {  t ≥ 3  * * *
a)
{ 2^(2-x²) -1  ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2  ; 2^(2-x²)  ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹  ; 2^(2-x²)  ≠ 2⁰.⇔ {2-x²  ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ;  x ≠ ±√2 .  ⇒   x∈  ( -∞ ; -√2 ) ∪  (-√2 ; -1] ∪ [1 ; √2) U  (√2 ; ∞) .
b)
2^(2-x²) -1  ≥ 3 ⇔ 2^(2-x²)  ≥ 4 ⇔2^(2-x²)  ≥ 2² ⇔2- x²  ≥ 2 ⇔ x² ≤ 0  ⇒ x=0.

ответ:   x∈  ( -∞ ; -√2 ) ∪  (-√2 ; -1] ∪ { 0} ∪  [1 ; √2) U  (√2 ; ∞) .
4,8(100 оценок)
Ответ:
alina20332
alina20332
29.07.2021

a) cos(a-b) - cos(a+b) = cos(a)*cos(b) + sin(a)*sin(b) - (cos(a)*cos(b) - sin(a)*sin(b)) = cos(a)*cos(b) + sin(a)*sin(b) - cos(a)*cos(b) + sin(a)*sin(b) = 2sin(a)*sin(b)

b) sin(2a) + cos(2a) + 1 = 2*sin(a)*cos(a) + cos²(a) - sin²(a) + cos²(a) + sin²(a) = 2*sin(a)*cos(a) + 2*cos²(a) = 2*cos(a)*(sin(a) + cos(a))


sin(\frac{x}{3}) = -\frac{1}{2}

\frac{x}{3} = arcsin(-\frac{1}{2}) + 2πκ, κ∈Ζ

или

\frac{x}{3} = π - arcsin(-\frac{1}{2}) + 2πn, n∈Ζ

\frac{x}{3} = -\frac{\pi}{6} + 2πκ, κ∈Ζ

\frac{x}{3} = π + \frac{\pi}{6} + 2πn, n∈Ζ

\frac{x}{3} = \frac{7\pi}{6} + 2πn, n∈Ζ

x₁ = -\frac{\pi}{2} + 6πκ, κ∈Ζ

x₂ = \frac{7\pi}{2} + 6πn, n∈Ζ

Отбор корней произведем с неравенств.

x₁: 0 ≤  -\frac{\pi}{2} + 6πκ ≤ 3π

\frac{\pi}{2} ≤ 6πκ ≤ 3π + \frac{\pi}{2}

\frac{\pi}{2} ≤ 6πκ ≤ \frac{7\pi}{2}

\frac{1}{2} ≤ 6κ ≤ \frac{7}{2}

\frac{1}{12} ≤ κ ≤ \frac{7}{12}

Так как κ∈Ζ, то  κ∈∅

x₂: 0 ≤  \frac{7\pi}{2} + 6πn ≤ 3π

-\frac{7\pi}{2} ≤  6πn ≤ 3π - \frac{7\pi}{2}

-\frac{7\pi}{2} ≤  6πn ≤ - \frac{\pi}{2}

-\frac{7}{2} ≤  6n ≤ - \frac{1}{2}

-\frac{7}{12} ≤  n ≤ - \frac{1}{12}

Так как n∈Ζ, то  n∈∅ ⇒ нет корней на данном промежутке

4,4(34 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ