Лодка более 5 км по озеру против течения реки и провела времени на реке на 15 минут больше, чем на озере. Если скорость лодки 8 км / ч по реке и 10 км / ч по озеру, найдите расстояние, на которое лодка проплыла по реке.
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е (3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета: x1+x2=-b/a=5-3p x1*x2=c/a=3p^2-11p-6 Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2. Выделим полный квадрат: (x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6). По условию, эта сумма квадратов равна 65. Получаем: (5-3p)^2-2(3p^2-11p-6)=65 Решим его: 25-30p+9p^2-6p^2+22p+12-65=0 3p^2-8p-28=0 D=(-8)^2-4*3*(-28)=400 p1=(8-20)/6=-2 p2=(8+20)/6=14/3 Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен. Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят. Теперь найдем корни уравнения: 1)p=-2 x^2-11x+28=0 x1=4; x2=7 2)p=14/3 x^2+9x+8=0 x1=-8; x2=-1 ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
Тут одна параболf
когда квадратный трёхчлен записан в виде произведения то это означает:
ах²+bx+c= a(x-x₁)(x-x₂)- что тут указаны корни уравнения ах²+bx+c=0, то есть точки пересечения параболы с осью ОХ.
1)у= - (х-2)(х+4)- означает, что а<0 - ветви параболы направлены вниз,
2)точки с координатами (-4;0) и (2;0)- точки персечения графика с осью ОХ
3) легко найти ось симметрии она находится посередине между точками -4 и 2 , а акже параллельна оси ОУ
х= (-4+2):2= - 1 запишем отдельно:
х= -1
Для построения графика надо найти ординату вершины
уВ(-1)= - (-1-2)(-1+4) = - (-3)*3=9
координаты вершины (-1;9)
и найдём точку пересечения с осью ординат при х=0
у= - (0-2)(0+4)=8
точка пересечения с осью ОУ (0;8)
График в файле
проверка : -(х-2)(х+4)= - (х²+4х-2х-8)= - х²-2х+8
график и все тоски идентичны