1. Первый каменщик выполнит работу за: T1 дней;
2. Второй каменщик выполнит работу за: T2 дней;
3. По условию задачи: T2 = (T1 - 4) дней;
4. Вместе они выполнят работу за: To = 4,8 дней;
5. Составляем уравнение выполнения работы двумя каменщиками:
1 / T1 + 1 / T2 = 1 / To = 1/ 4,8;
1 / T1 + 1 / (T1 - 4) = (2 * T1 - 5) / (T1 * (T1 - 4)) = 1/4,8;
4,8 * (2 * T1 - 4) = T1² - 4 * T1;
T1² - 13,6 * T1 + 19,2 = 0;
T11,2 = 6,8 +- sqrt(6,8² - 19,2) = 6,8 +- 5,2;
T11 = 6,8 - 5,2 = 3,6 дней (слишком быстро, To= 4,8 дней, не подходит);
T1 = 6,8 + 5,2 = 12 дней;
T2 = T1 - 4 = 12 - 4 = 8 дней.
ответ: первый каменщик выполнит работу за 12 дней, вторая за 8 дней.
Объяснение:
=(x+2)^2-4 - квадратичная функция, график - парабола, ветви направлены вверх, график можно получить путём параллельного переноса графика функции y=x^2 на 2 единичных отрезка влево и на 4 единичных отрезка вниз
1) D(y)=R
2) Нули: x=0 при y=0; y=0 при x=0 и x=-4
3) y<=0 при x принадлежащем [-4;0], y>0 при x принадлежащем (-бесконечность;-4) и (0;+ бесконечность)
4) Функция убывает на промежутке x принадлежащем (-бесконечность;-2) и возрастает на промежутке x принадлежащем (-2;+ бесконечность)
5) E(y)=[-4;+бесконечность).