равним два треугольника. Запишем теорему Пифагора для них, так как углы неизвестны.
Приравниваем правые части:
Подставим эту найденную нами скорость в любое из выражений, составленных по теореме Пифагора:
Определяем углы из треугольников перемещений:
Тогда
Косинусы углов:
Тогда
Или
Синус принимает одно и то же значение при двух разных углах, дополняющих друг друга до .
Тогда
Тогда один из углов
Это следует из треугольника перемещений:
Заметим важный факт: биссектриса угла между векторами начальных скоростей камней будет наклонена под углом к горизонтали.
Обозначим угол между вектором и биссектрисой . Тогда
ответ: , , , .
Задача 14. Из одной точки, расположенной достаточно высоко над поверхностью земли, вылетают две частицы с горизонтальными противоположно направленными скоростями и . Через какое время угол между направлениями скоростей этих частиц станет равным ? На каком расстоянии друг от друга они при этом будут находиться? Сопротивлением воздуха пренебречь.
Решим эту задачу двумя Первый
Интересное задание. Не такое легкое, как может показаться. И уж не на
Пусть х - число булочек с повидлом, у - число булочек с маком. Тогда, Исходя из первого предложения получаем нестрогое неравенство
Теперь из второго предложения можно сказать, что
Разделим на 5 обе части неравенства
Теперь умножим на 2 обе части неравенства
То есть булочек с маком было не больше 22.
Если умножить обе части неравенства (2) на 1,5, то получим
Заметим, что x=1,5, то есть
Можно было бы предположить х=33, у=22. Тем более их сумма равна 55, но есть третье и четвертое предложение, которые опровергают эту версию.
После продажи булочек стало на 4 меньше, следовательно их число не превышает (55-4)=51. Не более 51 булочки осталось на витрине. Мы не знаем сколько каждого вида было продано, теперь нам придется вводить новые переменные, чтобы решить теперь это неравенство как предыдущее. Пусть u - булочки с повидлом. v - булочки с маком. Тогда получаем новое неравенство
Условие из четвертого предложения должно говорить
3u=4v
Разделим обе части на 4, получим
v=0,75u
Подставим в (4) значение v через u.
Так как булочек может быть лишь целое число, то
Теперь умножим обе части (5) на 0,75. Получим
Заметим, что в левой части неравенства стоит v. Так как v - может быть только целым число, то
Остальное не умещается, смотри в прикрепленном файле