1)x^2+9x+8 (x+1)(x+8) (x+8)
==
3x^2+8x+5 3(x+1)(x+1 2/3) 3x+5
x^2+9x+8=0 3x^2+8x+5=0
D= 8^2-4*3*5=64-60=4
x1+x2=-9| -8(+)-))2
x1,2=
|-8;-1 6
x1x2=8 | x1=-1 ; x2=-1 2/3
2)
a)x(x+3)-4(x-5)=7(x+4)-8
x^2+3x-4x+20=7x+28-8
x^2-8x=0
x(x-8)=0
x=0 или х-8=0
х=8
б)2x^4-9x+4=0
D=(-9)^2-4*2*4=81-32=49
9(+(-))7
x1,2=
4
x1=4; x2=0.5
На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.
Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::