Сначала разделим левую и правую часть уравнения на x, получим:
Решим сначала однородное уравнение, вида:
Это уравнение с разделяющимися переменными, получаем:
Берем интеграл от обоих частей получаем:
Дальше методом вариации свободной постоянной ищем частное решение неоднородного уравнения:
Представляем C как функцию от х, т.е C=C(x) и подставляем выражение в исходное уравнение. Получаем:
Сокращаем подобные и прочее, получаем:
Подставляем получившееся значение C(x) в выражение и получаем частное решение
В итоге общее решение неоднородного уравнения это сумма общего решения однородного уравнения и частного решения неоднородного уравнения. Т.е.
Все, уравнение решено. Теперь решаем задачу Коши:
Т.к.
то приходим к уравнению
Все, нашли С, теперь пишем решение задачи Коши:
ответ: Общее решение дифференциального уравнения:
Частное решение дифференциального уравнения, удовлетворяющиего начальному условию :
Решите квадратные уравнения и неравенства: 1)2(3+5x)<3(7x-4)-4
6+10x<21x-12-4
10x-21x<-12-4-6
-11x=-22
x=2
2.)(x-1)2-5≤(x+4)2
2x-2-5≤2x+8
2x-2x≤15 не имеет значения .
Решите линейные уравнения и неравенства:
1.)3х+5=3х-1
3x-3x=-5-1-не имеет значения
2.)2-3(х+2)=5-2х
2-3x-6=5-2x
-3x+2x=5-2
-x=3 /(-1)
x=-3
3.)4х-5.5=5х-3(2х-1.5)
4x-5.5=5x-6x+4.5
4x-5x+6x=5.5+4.5
5x=10
x=2
4.)2(3+5х)<3(7х-4)-4;
6+10x<21x-12-4
10x-21x<-12-4-6
-11x=-22
x=2
5.)(x-1)2-5≤(x+4)2
2x-2-5≤2x+8
2x-2x≤15 не имеет значения .