Вначале необходимо найти производную и приравнять ее к 0 для нахождения экстремумов:
y' = (6cosx)' = -6*sinx = 0, sinx=0, x=pi/2 + pi*k
Дан промежуток [-pi/2; 0], необходимо определить, какие именно точки из множества решений попадают в него:
k=-1, x=pi/2-pi=-pi/2 - принадлежит промежутку
Является ли х=-pi/2 - экстремумом? - посчитать знак производной ДО и ПОСЛЕ этой точки: производная меняет свой знак с плюса на минус: х=-pi/2 - максимум функции.
На [-pi/2; 0] функция убывает, значит наибольшее значение y(-pi/2)=0, наименьшее значение y(0)=6
а) { y=x^2, x-y=-6;
из второго уравнения видно, что х=у-6
подставляем вместо "х" "у-6" в первое уравнение.
получаем квадратное уравнение с у-ом, решаем его, получаем корни: у=9;4, тогда
х=3;-2 (нашли из подстановки "у" в х=у-6)
б) { x+y=8, xy=12;
из первого уравнения видно, что х=8-у; подставим этот х во 2-ое уравнение, получим квадратное уравнение с "у". Решим его и получим, что корни у=6;2
найдем х, х=2;6
в) {x^2-Y^2=24, 2y-x=-7;
из 2-ого уравнения видно, что х=7+2у
подставим это во второе уравнение и получим квадратное уравнение с у, решив его, получим корни у=-1;-8(1/3).
найдем х, х=5;-9(2/3)
г) {x^2+y^2+3xy=-1, x+2y=0
из второго уравнения видно, что х=-2у, подстави это в 1-ое урав. и получим, что у^2=1; у=+-1.
тогда х=-2;2