Дерево возможных вариантов см. на рисунке. Отсюда наглядно виды все решения.
а) Сколько имеется различных освещения коридора, включая случай когда все лампочки не горят. Как видим, каждая лампочка имеет два состояния (горит/не горит). Т.к. лампочек три, то всего вариантов будет 2³ = 8. Все 8 вариантов представлены на рисунке.
б) Сколько имеется различных освещения, если известно что лампочки №1 и №2 горят или не горят одновременно? Когда лампочки №1 и №2 горят, то лампочка №3 либо горит, либо не горит (2 варианта). Точно также, когда лампочки №1 и №2 не горят, то лампочка №3 тоже либо горит, либо не горит (2 варианта). Итого, 4 варианта. Проверяем по рисунку.
в) Сколько имеется различных освещения, если известно что при горящей лампочке №3 лампочка №2 не горит? По рисунку считаем варианты - их 6. Когда лампочка №3 горит, то лампочка №2 не горит (по условию), а у лампочки №1 есть 2 варианта - горит/не горит. Когда лампочка №3 не горит, то вариантов у оставшихся лампочек будет 2² = 4. Вот и получается 6 вариантов.
г) сколько имеется различных освещения коридора когда горит большинство лампочек? Т.е. нам надо сосчитать случаи, когда одновременно горят 2 и более лампочек. По рисунку высчитываем, что есть 4 варианта. Или считаем число сочетаний двух лампочек из трёх, плюс число сочетаний три лампочки из трёх. Итак, 4 варианта.
Нарисуй задачку на бумаге и сама увидишь как все просто.
2)сумма смежных углов=180⁰
пусть х-первый угол,тогда х+20-второй.
х+х+20=180
2х=160
х=80⁰-первый угол.
а)80⁰+20⁰=100⁰-второй угол.
3)Вариант 1:
< ВОД = < СОА вертикальные углы
Пусть < СОА = x
Тогда < АОК = 118 -x
< COA + < AOK = 180
x + (118 -x) + (118-x) = 180
x = 56 градусов--- это и есть угол ВОД
Вариант 2:
Обозначь углы AOK и KOD за х, а угол COB за 2х
COD-KOD=COK
180-х=118
Х=62
COD-COB=BOD
180-(62•2)=56