Разложим знаменатель на множители:
Сумма коэффициентов равна нулю, значит корни уравнения 1 и -1/3.
Интеграл примет вид:
Разложим дробь, стоящую под знаком интеграла, на составляющие:
Дроби равны, знаменатели равны, значит равны и числители:
Многочлены равны, когда равны коэффициенты при соответствующих степенях. Составим систему:
Выразим из второго уравнения А:
Подставляем в первое и находим В:
Находим А:
Сумма принимает вид:
Значит, интеграл примет вид:
Для второго слагаемого выполним приведение под знак дифференциала:
Интегрируем:
Упрощаем:
Применим свойство логарифмов:
Объяснение:
(n-2)/(n-3)= (n-2-1+1)/(n-3)= (n-3+1)/(n-3)=((n-3)/(n-3))+(1/(n-3))
=1+(1/(n-3))
(n-2)/(n-3)= 1+(1/(n-3))
для того чтобы это выражение было целым числом
надо чтобы 1/(n-3) было целым числом
рассмотрим возможные случаи
1) при n≤2 значение 1/(n-3) будет дробным числом <1
2) при n=3 дробь не существует
при n>4 значение 1/(n-3) будет дробным числом >1
3) остается n=2 и n=4
при n=2 (n-2)/(n-3)=(2-2)/(2-3)=0 значение дроби целое число
при n=4 (4-2)/(4-3)=2 значение дроби целое число
=>
Сумма всех целых чисел n , для которых дробь n-2/n-3 является целым числом 2+4=6