М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kuzhbapolina20
kuzhbapolina20
17.08.2021 13:20 •  Алгебра

3. В чем суть метода подстановки при решении системы уравнений с двумя переменными? (выразить

4. В чем суть метода алгебраического сложения при решении системы уравнений с двумя переменными? (исключить...

👇
Ответ:
anghelina1
anghelina1
17.08.2021

3. В чем суть метода подстановки при решении системы уравнений с двумя переменными?

Выразить одну переменную через другую из любого уравнения системы. Подставить полученное выражение в другое уравнение системы и решить как одно уравнение с одной неизвестной переменной.

4. В чем суть метода алгебраического сложения при решении системы уравнений с двумя переменными?

Исключить сложением одну из переменных,  сложить друг с другом левые части уравнений системы, приравняв к ним сумму правых частей тех же уравнений.

4,5(13 оценок)
Открыть все ответы
Ответ:
iNNA9078
iNNA9078
17.08.2021
Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6.
Точки их пересечения и есть решение заданного уравнения.

Проверку правильности построения и определения точек можно выполнить аналитически.
х² = 6 - х
х² + х - 6 = 0.
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.

График и таблица точек для построения параболы даны в приложении.
Для построения прямой достаточно двух точек: х = 0, у = 6,
                                                                                   х = 3, у = -3+6 = 3

Решите графически уравнение: x (в квадрате) = 6-x
4,8(11 оценок)
Ответ:
дагаыоукм
дагаыоукм
17.08.2021
Решение уравнения будем искать в виде y=e^{\beta\cdot x}.

Составим характеристическое уравнение.
 \beta^2-3\beta=0\\ \beta_1=0;\\ \beta_2=3;

Фундаментальную систему решений функций:
y_1=1\\ y_2=e^{3x}

Общее решение однородного уравнения:
 y_{*}=y_1+y_2=C_1\cdot e^{3x}+C_2

Теперь рассмотрим прафую часть диф. уравнения:
 f(x)=3e^{3x}

найдем частные решения.
Правая часть имеет вид уравнения
P(x)=e^{\alpha x}(R(x)\cos(\gamma x)+L(x)\sin(\gamma x)), где R(x) и S(x) - полиномы, которое имеет частное решение.

y=x^ze^{\alpha x}(P(x)\cos(\gamma x)+S(x)\sin (\gamma x)), где z -кратность корня \alpha+\gamma i

У нас R(x) = 3; L(x) = 0; \alpha=3;\,\, \gamma =0

Число \alpha + \gamma i=3 является корнем характеристического уравнения кратности z=1

Тогда уравнение имеет частное решение вида:
 y=x(Ae^{3x})
Находим 2 производные, получим
y'=3Ax3e^{3x}+Ae^{3x}\\ y''=3Ae^{3x}(3x+2)

И подставим эти производные в исходное диф. уравнения
y''-3y'=3e^{3x}\\ 3Ae^{3x}=3e^{3x}\\ A=1

Частное решение имеет вид: y_*=xe^{3x}

Общее решение диф. уравнения:
  y=C_1e^{3x}+C_2+xe^{3x}
4,8(5 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ