х = 18, у = -6.
Объяснение:
Так как графики функций пересекаются, то в точке их пересечения координаты одного графика равны координатам другого.
1) Приравняем у1 и у2:
-х/3 = 12 - х, откуда находим координату х:
-х = 36 - 3х,
2х = 36,
х = 18.
2) По у1 находим координату у при х = 18:
у 1 = - 18/3 = - 6.
3) По у2 делаем проверку (при х = 18 он должен быть = - 6):
у 2 = 12 - 18 = - 6.
Совпало с п.3 - значит, расчеты координат точки пересечения выполнены верно.
ответ: координаты точки пересечения:
х = 18, у = -6.
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
-1,1
Объяснение:
1,6+(-1,4)/2×(-1,4)=1,6+(-1,4)/2,8=1,6-0,5= -1,1