М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Школьник071
Школьник071
11.09.2020 11:14 •  Алгебра

Решить неравенство:log0,5(x+1)-log0,5(x-2)<или равно1

👇
Открыть все ответы
Ответ:
Amrlololoshka
Amrlololoshka
11.09.2020

В решении.

Объяснение:

Решить уравнение с модулем:

1) |х+2|+х=0

   х+2 = -х    ⇒  2х = -2    ⇒   х= -1;

   х+2 = х     ⇒  0х = -2.

ответ:  х= -1;

2) -3|x-4|-x=0

а) х-4>=0 ⇒  -х-3(х-4)=0

                     -х-3х+12=0

                     -4х= -12

                     х=3, но это решение не удовлетворяет неравенству:

б) х-4 < 0 ⇒  -х-3(4-х)=0

                      -х-12+3х=0

                      -х+3х=12

                       2х=12

                        х=6, но это решение не удовлетворяет неравенству    

    х-4>=0

Для данной задачи не существует решения в действительных числах.

4,7(2 оценок)
Ответ:
Bandurustka26
Bandurustka26
11.09.2020

y = \cos( {x}^{x} )

Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.

Формула

d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.

Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.

Дифференцируем

\frac{d}{dt} ( \cos(t) ) \times \frac{d}{dx} ( {x}^{x} ) = - \sin(t) \times \frac{d}{dx} ( {x}^{x} ) = - \sin( {x}^{x} ) \times \frac{d}{dx} ( {x}^{x} )

Для упрощения производной запишем х^х как e^( ln(x^x) ).

- \sin( {x}^{x} ) \times \frac{d}{dx} (e^{ ln({x}^{x} ) } ) = - \sin( {x}^{x} ) \times \frac{d}{dx} (e^{x ln(x) } )

И опять сложная функция.

Дифференцируем её аналогично:

f(x) = e^x, g(x) = xln(x)

Заменим xln(x) перевенной k:

- \sin( {x}^{x} )( \frac{d}{dk}( {e}^{k} ) \times \frac{d}{dx} (x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{k} \times \frac{d}{dx}(x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{x ln(x)} \times \frac{d}{dx} (x ln(x) ))

За правилом производной произведения имеем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (x \times \frac{d}{dx} (x ln(x) ) + ln(x) \times \frac{d}{dx}(x))

Вычисляем все производные и получаем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (1 + ln(x) )

Это и есть ответ.

4,4(62 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ