Обозначим скорость катера по течению за х км/ч. Тогда скорость катера в стоячей воде равна (х-4) км/ч. По реке катер шел 15/x часов, по стоячей воде 4/(x-4) часов.
Имеем уравнение:
15/x+4/(x-4)=1
15*(x-4)+4*x=x*(x-4)
15*x-60+4*x=x^2-4*x
Имеем квадратное уравнение:
x^2-23*x+60=0 Д=(-23)^-4*1*60=289
x1,2=23+-17 РАЗДЕЛИТЬ ВСЕ НА 2
x1=20 (км/час)
x2=3 (км/час) - посторонний корень, скорость катера по течению не может быть меньше скорости течения.
Проверка:
15/20+4/(20-4)=3/4+4/16=3/4+1/4=1 (час), что совпадает с условием задачи
ответ: Скорость катера по течению равна 20 км/x
Для других точек хотя бы одно неравенство будет неверным.
Например,
неверно 2 неравенство
7) Из города А в город В ведут 8 дорог. Обозначим их: 1,2,3,4,5,6,7,8 .
Из города В в город С ведут 9 дорог. Обозначим их: a,b,c,d,e,f,g,i,k .
Тогда можно написать, какие маршруты могут быть.
(1,a) (1,b) (1,c) (1,d) (1,e) (1,f) (1,g) (1,i) (1,k)
(2,a) (2,b) .......................................................... (2,k)
(3,a) (3,b)............................................................. (3,k)
........................................................................................
(8,a) (8,b).............................................................. (8,k)
Образовалась таблица из 8 строчек и 9 столбцов. Количество элементов в этой таблице равно 8*9=72 . Поэтому и маршрутов может быть 72 .